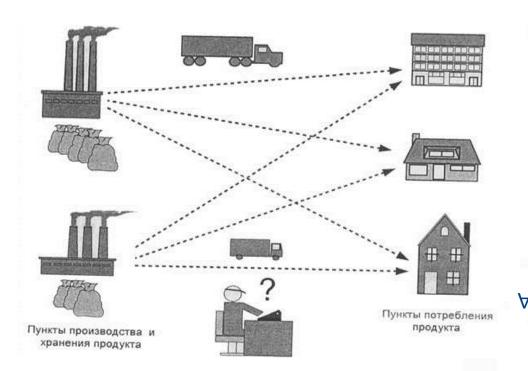


Семинар аспирантской школы по компьютерным наукам

Математические модели задач, возникающих при анализе функционирования транспортных систем

Докладчик:

Федин Геннадий Геннадьевич
Научный руководитель:
проф. Беленький Александр Соломонович


- 1. Задачи возникающие при анализе функционирования транспортной системы
 - Транспортные задачи
 - Задачи размещения транспортных узлов
- 2. Методы решения
- 3. Программное обеспечение
 - Для решения задач линейного программирования
 - Для решения задач смешанного программирования

- 1. <u>Задачи возникающие при анализе функционирования</u> <u>транспортной системы</u>
 - Транспортные задачи
 - Задачи размещения транспортных узлов
- 2. Методы решения
- 3. Программное обеспечение
 - Для решения задач линейного программирования
 - Для решения задач смешанного программирования

Транспортные задачи

$$\sum_{i} \sum_{j} c_{ij} x_{ij} \to \min_{x}$$

$$\forall j = 1, ..., m, \qquad \sum_{i} x_{ij} = a_{j}$$

$$\forall i = 1, ..., n, \qquad \sum_{j} x_{ij} = b_{i}$$

$$\forall i = 1, ..., n, j = 1, ..., m, \qquad x_{ij} \ge 0$$

- Минимизация транспортных издержек
- Непрерывные переменные
- Задачи линейного программирования

Транспортные задачи

Классическая

Доставка грузов одного типа

Унимодулярная матрица Динамическая

Рассматривается несколько периодов

Различные объемы производства и потребления

Штрафы за не поставку груза

Многопродуктовая

Доставка грузов нескольких типов

Ограничения на пропускные способности

Разложение Данцига-Вулфа

- 1. <u>Задачи возникающие при анализе функционирования</u> <u>транспортной системы</u>
 - Транспортные задачи
 - Задачи размещения транспортных узлов
- 2. Методы решения
- 3. Программное обеспечение
 - Для решения задач линейного программирования
 - Для решения задач смешанного программирования

p-Hub Median Problem

n — количество клиентов p — количество узлов для размещения d_{ij} — расстояние между вершинами a_i - «важность» каждого пункта

$$\sum_{i} \sum_{j} a_{i}d_{i,j}x_{i,j} \rightarrow \min_{x}$$

$$\forall i = 1, ..., n, \sum_{j} x_{i,j} = 1$$

$$\forall i = 1, ..., n, j = 1, ..., n, i \neq j, x_{j,j} \geq x_{i,j}$$

$$\sum_{i} x_{i,i} = p$$

$$\forall i = 1, ..., n, j = 1, ..., n, x_{i,j} \in \{0,1\}$$

ReVelle C.S., «Central facilities location», Geographical Analysis, 1970, 30-42

Задачи о размещении транспортных узлов Типы

Постановка задачи	Условия на граф из транспортных узлов (*)
Планарная	Полный граф
Дискретная	Звезда
	Дерево
	Линия

Целевая функция	Пропускные способности	
Минимакс	Ограниченные	
Минисум	Неограниченные	

• Alumur S., «Network hub location problems: The state of the art», European Journal of Operational Research, 2008, 1-21

Capacitated p-Hub Median Problem

$$\sum_{i} \sum_{j} a_{i}d_{i,j}x_{i,j} \rightarrow \min_{x}$$

$$\forall i = 1, ..., n, \sum_{j} x_{i,j} = 1$$

$$\forall i = 1, ..., n, j = 1, ..., n, i \neq j, x_{j,j} \geq x_{i,j}$$

$$\sum_{i} x_{i,i} = p$$

$$\forall i = 1, ..., n, Q_{j}x_{j,j} \geq \sum_{i} a_{i}x_{i,j}$$

$$\forall i = 1, ..., n, j = 1, ..., n, x_{i,j} \in \{0,1\}$$

ReVelle C.S., «Central facilities location», Geographical Analysis, 1970, 30-42

Задачи о размещении транспортных узлов Типы

Стоимость размещения узлов	Стоимость «присоединения»
Постоянная	Постоянная
Переменная	Переменная

Тип связей	Количество размещаемых узлов
Односвязные	Задано
Многосвязные	Не задано

• Alumur S., «Network hub location problems: The state of the art», European Journal of Operational Research, 2008, 1-21

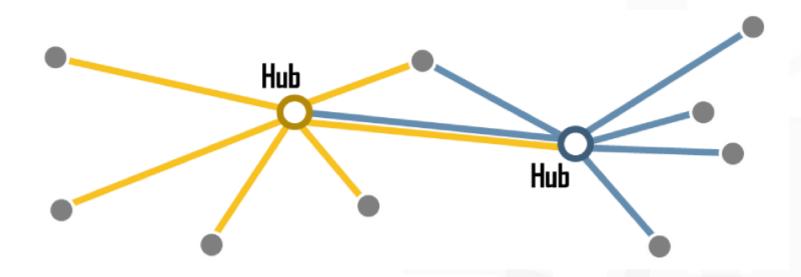
Capacitated Hub Median Problem

$$\sum_{i} \sum_{j} a_{i}d_{i,j}x_{i,j} + \sum_{i} f_{i}x_{i,i} \rightarrow \min_{x}$$

$$\forall i = 1, ..., n, \sum_{j} x_{i,j} = 1$$

$$\forall i = 1, ..., n, j = 1, ..., n, i \neq j, x_{j,j} \geq x_{i,j}$$

$$\sum_{i} x_{i,i} = p$$


$$\forall i = 1, ..., n, Q_{j}x_{j,j} \geq \sum_{i} a_{i}x_{i,j}$$

$$\forall i = 1, ..., n, j = 1, ..., n, x_{i,j} \in \{0,1\}$$

ReVelle C.S., «Central facilities location», Geographical Analysis, 1970, 30-42

Задачи о размещении транспортных узлов Hub Location Problem

- Подграф транспортных узлов полный
- Все перевозки осуществляются через транспортные узлы
- Транспортировка между узлами дешевле

p-Hub Location Problem

$$C_{i,j,k,l} = \chi d_{i,k} + a d_{k,l} + \delta d_{l,j},$$
 $H_k = egin{cases} 1, & ext{если вершина } k - ext{узел,} \ 0, ext{иначе.} \end{cases}$ $X_{i,j,k,l} - ext{доля потока } W_{i,j}$

$$\sum_{i} \sum_{k} \sum_{l} \sum_{j} W_{i,j} C_{i,j,k,l} X_{i,j,k,l} \rightarrow \min_{X}$$

$$\sum_{k} H_{k} = p$$

$$\forall i, j = 1, \dots, n, \sum_{k} \sum_{l} X_{i,j,k,l} = 1$$

$$\forall i, j, k = 1, \dots, n, \sum_{k} X_{i,j,k,l} \leq H_{k}$$

$$\forall i, j, l = 1, \dots, n, \sum_{k} X_{i,j,k,l} \leq H_{k}$$

$$\forall k = 1, \dots, n, H_{k} \in \{0,1\}$$

$$\forall i, j, k, l = 1, \dots, n, X_{i,j,k,l} \geq 0$$

• Ernst T. A., «Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem», European Journal of Operational Research, 1998, 100-112

Задачи о размещении транспортных узлов Приложение

Область	Количество работ
Авиатранспорт	18
Экстренные службы	2
Службы доставки	6
Цепи поставок	4
Телекоммуникации	6
Наземный транспорт	18

• Farahani R.Z., «Hub location problems: A review of models, classification, solution techniques, and applications», Computers & Industrial Engineering, 2013, 1096-1109

- 1. Задачи возникающие при анализе функционирования транспортной системы
 - Транспортные задачи
 - Задачи размещения транспортных узлов

2. Методы решения

- 3. Программное обеспечение
 - Для решения задач линейного программирования
 - Для решения задач смешанного программирования

Методы решения

Exact	Constructive heuristics	Mathematical programming	Local search	MetaHeuristics
 Benders decomposition method Branch and Cut 	 Greedy Stingy Dual ascent Composite 	 Dynamic programming Lagrangian relaxation Aggregation 	 Alternate Interchange 	 Tabu search Variable neighborhood search Generic search Simulated annealing Heuristic concentration Scatter search Ant colony Neural networks Decomposition Hybrids

- Mladenovic N., «The p-median problem: A survey of metaheuristic approaches», European Journal of Operational Research, 2007, 927–939
- Farahani R.Z., «Hub location problems: A review of models, classification, solution techniques, and applications», Computers & Industrial Engineering, 2013, 1096-1109

- 1. Задачи возникающие при анализе функционирования транспортной системы
 - Транспортные задачи
 - Задачи размещения транспортных узлов
- 2. Методы решения
- 3. Программное обеспечение
 - Для решения задач линейного программирования
 - Для решения задач смешанного программирования

- 1. Задачи возникающие при анализе функционирования транспортной системы
 - Транспортные задачи
 - Задачи размещения транспортных узлов
- 2. Методы решения
- 3. Программное обеспечение
 - Для решения задач линейного программирования
 - Для решения задач смешанного программирования

Программное обеспечение Для решения задач линейного программирования

- 40 задач
- Максимальное время работы 25,000 секунд
- i7-4790K, 4.0GHz, 32GB
- Максимальное количество ненулевых элементов 12,372,358
- Максимальное количество столбцов 1,259,121
- Максимальное количество строк 986,069

Название	Коммерческое ПО	Медианное время (сек)
XPRESS	Да	21
GUROBI	Да	24
CLP	Нет	27
CPLEX	Да	47
MOSEK	Да	90
Google-GLOP	Нет	233
MATLAB	Да	273
SOPLEX	Нет	285
GLPK	Нет	2640
LP_SOLVE	Нет	13047

http://plato.asu.edu/ftp/lpsimp.html

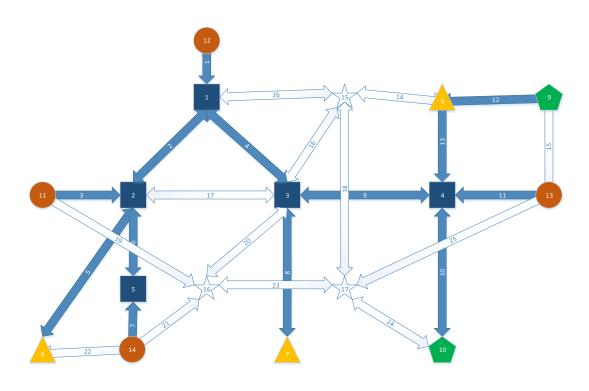
- 1. Задачи возникающие при анализе функционирования транспортной системы
 - Транспортные задачи
 - Задачи размещения транспортных узлов
- 2. Методы решения
- 3. Программное обеспечение
 - Для решения задач линейного программирования
 - Для решения задач смешанного программирования

Программное обеспечение Для решения задач смешанного программирования

- 212 решенных задач из MIPLIB2010
- Максимальное время работы 7,200 секунд
- Intel Xeon X5680, 3.3GHz, 32GB

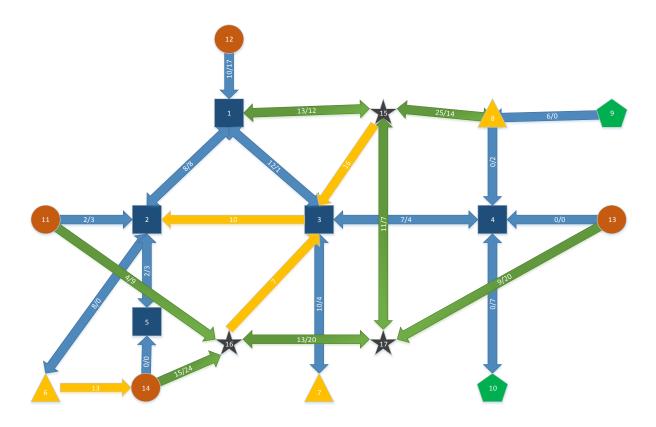
Название	Последняя версия	Коммерческое ПО	Количество решенных задач	Относительная скорость
CPLEX	12.6.3	Да	199	1.12
GUROBI	6.5	Да	203	1
XPRESS	7.9	Да	171	2.01
CBC	2.9.4	Нет	113	14
FiberSCIP	3.2.0	Да	143	7.96

http://plato.asu.edu/ftp/solvable.html



Спасибо за внимание!

Схема транспортной сети


Грузопотоки в сети

	Номер	Номер	Мощность
Nº	вершины	вершины	грузопотока
	отправителя	получателя	Трузопотока
1	11	12	3
2	12	11	2
3	12	14	2
4	14	12	7
5	12	13	4
6	13	12	3
7	11	14	4
8	14	11	2
9	11	13	5
10	13	11	2
26	8	2	2
27	8	14	5
28	6	13	5
29	7	14	4
30	12	7	2
31	8	1	4
32	8	12	4
33	10	1	3

Объект	Пропускная способность объекта	Удельные издержки на обслуживание	Удельная стоимость использования
Существующая дуга	20	4	0
Добавляемая дуга (стоимость строительства 30)	30	1	1
Существующая вершина	50	5	1 (0 для городов)
Добавляемый транспортный узел			
(стоимость строительства 100)	100	1	2

Схема транспортной сети с найденным планом модернизации

640 ограничений и 1745 переменных (29 булевых).