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Studying brain activity...

From evoked responses

... to connectivity analysis

Functional / Effective Anatomical



Connectivity = rhythms synchronization



Measuring brain activity

ECoG
invasive

fMRI
bad temporal resolution (≈ 1s)

MEG

EEG

EEG and MEG allow to measure electromagnetic brain activity
directly, noninvasively and with good temporal resolution



The idea of PSIICOS on a toy problem

Two problems:
volume conduction
and ill-posedness



The idea of PSIICOS on a toy problem

Generative model

(
m1

m2

)
(t) =

(
g11 g12
g21 g12

)(
s1
s2

)
(t) =

=

(
g11
g21

)
s1(t) +

(
g12
g22

)
s2(t) = ~g1s1(t) + ~g2s2(t) (1)

m1,2(t) - MEG/EEG measurements

{gji } - matrix of a forward model
s1,2(t) - unknown timeseries on cortex



The idea of PSIICOS on a toy problem

Time-frequency transformation

Apply time-frequency transform to (1)...(
M1

M2

)
(f, t) = ~g1S1(f, t) + ~g2S2(f, t) (2)

... and write cross-spectrum:

CMM (t, f)
def
= E{M(t, f)MH(t, f)} (3)

N.B.

M1,M2, S1, S2 after time-frequency transformation are complex



Cross-spectrum in detail

Let’s substitute (2) into (3)

CMM (t, f) = E


(
M1M̄1 M1M̄2

M2M̄1 M2M̄2

)
(f, t)

 =

E

{(
~g1S1(f, t) + ~g2S2(f, t)

)
·
(
~gT1 S̄1(f, t) + ~g2

T S̄2(f, t)
)}

(4)



Cross-spectrum in detail

Let’s substitute (2) into (3)

CMM (t, f) = E


(
M1M̄1 M1M̄2

M2M̄1 M2M̄2

)
(f, t)

 =

E

{(
~g1S1(f, t) + ~g2S2(f, t)

)
·
(
~gT1 S̄1(f, t) + ~g2

T S̄2(f, t)
)}

(4)

N.B.

~gi are real =⇒ ~gi
H = ~gi

T



Cross-spectrum in detail

Let’s substitute (2) into (3)

CMM (t, f) = E
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TE{S1(f, t)S̄2(f, t)}+
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TE{S2(f, t)S̄1(f, t)}+ ~g2 ~g2
TE{S2(f, t)S̄2(f, t)} (4)



Cross-spectrum in detail

Let’s substitute (2) into (3)

CMM (t, f) =

= ~g1 ~g1
TE{S1(f, t)S̄1(f, t)}+ ~g1 ~g2

TE{S1(f, t)S̄2(f, t)}+
+ ~g2 ~g1

TE{S2(f, t)S̄1(f, t)}+ ~g2 ~g2
TE{S2(f, t)S̄2(f, t)} (4)



Cross-spectrum in detail

Finally, we’ve got

(
cMM
11 cMM

12

cMM
21 cMM

22

)
=

= ~g1 ~g1
T cSS11 + ~g1 ~g2

T cSS12 + ~g2 ~g1
T cSS21 + ~g2 ~g2

T cSS22 (5)



Cross-spectrum in detail

Or in matrix form:
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Cross-spectrum in detail
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Volume conduction

We could have thrown the real part of this equation away [Nolte et
al., 2004], but we can do better.



Cross-spectrum in detail
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Separating powers and interactions

Vectorized equation:
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Separating powers and interactions
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⇑ ⇑
Let’s project equation to the orthogonal complement of these vectors

P :

F = [vec(g1gT
1 ), vec(g2gT

2 )]

F = USVT

U2 = [u1,u2]

P = I−U2UT
2

C⊥ = P vec(CMM )

(6)



Separating powers and interactions

Finally we get

P ·


cMM
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We know
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We want to find

cSS12 (t), cSS21 (t)



Global linear problem

We need to solve

vec(C⊥(t)) =

L∑
i=1

L∑
j=1

vec(gig
T
j )⊥cssij (t) + vec(CNN(t)) (7)

cssij (t) are the unknown timeseries on cortex which we are to recover



Global linear problem

PSIICOS objection:

vec(C⊥(t)) =

L∑
i=1

L∑
j=1

vec(gig
T
j )⊥cssij (t) + vec(CNN(t)) (8)

Define new variables:

Let Ω = vec(C⊥(t)),
Γk = vec(gig

T
j )⊥, σk(t) = cssij ,N(t) = CNN(t); then (8) will look

like:

Ω(t) =

L2∑
k=1

Γkσk(t) + N(t) (9)



MUSIC scan
(multiple signal classification, R. O. Schmidt, 1986)

One way to estimate coherent sources is to look at correlation of
topographies with signal subspase

Ω = USVT

Cr = [u1,u2, ...,ur]

A(n) =

{
σ

∣∣∣∣∣ ∥∥∥ΓT
σ Cr

∥∥∥ > threshold

}



Simulations

• Three phase-locked networks

• Realistic brain noize (1/f
profile)

• Networks activity overlap in
time

Sources locations:

Synchrony profiles:



PSIICOS vs ImCoh

Source reconstruction
With VC-projection With imaginary cross-spectrum:



Real data scan

100 iterations bootstrap + Pairwise clustering [Zalesky, 2012]



Minimization problem

Linear problem

So (9)

Ω(t) =

L2∑
k=1

Γkσk(t) + N(t)

Rewrites as

1

2

∥∥∥∥∥∥Ω(t)−
L2∑
k=1

Γkσk(t)

∥∥∥∥∥∥
2

Fro

−→ min (10)



Minimization problem

Linear problem

1

2

∥∥∥∥∥∥Ω(t)−
L2∑
k=1

Γkσk(t)

∥∥∥∥∥∥
2

Fro

−→ min (10)

Ill-posed problem! as L2 ≈ 106 and Ω(t) is ≈ 104 × 1, i.e. need to

find ≈ 106 unknowns from ≈ 104 equations. Thus,

regularization is required



Minimization problem

Linear problem

1

2

∥∥∥∥∥∥Ω(t)−
L2∑
k=1

Γkσk(t)

∥∥∥∥∥∥
2

Fro

+ λ

L2∑
k=1

√∥∥σk(t)
∥∥
Fro
−→ min (10)

Or in matrix notation

1

2
‖Ω− ΓΣ‖2Fro + λ

L2∑
k=1

√
‖Σk‖Fro −→ min (11)



Mixed-norm regularization

Regularization term
L2∑
k=1

√
‖Σk‖Fro has a l2,0.5-norm penalty.

Figure: Solution structure for different regularization norms

Penalties are different for time and space directions
in matrix S!!



Making problem convex...

Σ(n) = argmin
Σ

1

2
‖Ω− ΓΣ‖2Fro + λ

L2∑
k=1

‖Σk‖Fro
2 ·
√
‖Σ(n−1)

k ‖Fro
=

= argmin
Σ

1

2
‖Ω− ΓΣ‖2Fro + λ

L2∑
k=1

1

w
(n)
k

‖Σk‖Fro (12)

I.e. we approximate l2,0.5-norm with weighted l2,1-norm and get a
convex problem. Similar approach is used in IRLS algorithm
(Iterative Reweighted Least Squares)



Finally...

Ultimately, we get:

Σ(n) = argmin
Σ

1

2
‖Ω− ΓWnΣ‖2Fro + λ

L2∑
k=1

‖Σk‖Fro =

= argmin
Σ

1

2

∥∥∥Ω− Γ(n)Σ
∥∥∥2
Fro

+ λ
L2∑
k=1

‖Σk‖Fro (13)



Outline of the algorithm

Repeat

1 Solve convex problem

Σ(n) = argmin
Σ

1

2

∥∥∥Ω− Γ(n)Σ
∥∥∥2
Fro

+ λ

L2∑
k=1

‖Σk‖Fro

(we use Block-Coordinate Descent or BCD with duality gap
stopping critereon)

2 Recalculate Γ(n) based on Σ(n−1)

till convergence



Active set strategy

So, we have ≈ 106 × 104 linear system for each
timestep or ≈ 106 × 104 × 500 in total. How to
solve it?



Active set strategy

Active set definition

Locations that are correlated with the residual error:

A(n) =

{
σ

∣∣∣∣∣ ∥∥∥ΓT
σ (Ω− ΓΣ(n−1))

∥∥∥
Fro

> λ

}
(14)

Usage:

Pick locations from A(n); if solution is bad, expand A(n)



Outline of the algorithm

Repeat

1 Solve convex problem on the active set

ΣA
(n) = argmin

ΣA

1

2

∥∥∥Ω− Γ
(n)
A ΣA

∥∥∥2
Fro

+ λ

size(A)∑
kA=1

∥∥ΣkA

∥∥
Fro

2 If duality gap is small, proceed to st. 3, if not, expand A and
go to step 1

3 Recalculate Γ(n) based on Σ(n−1)

till convergence



Simulated data

• 3 networks on real MRI grids

• Induced activity (same frequencies = 10 Hz, different
envelopes for each network)

• Bandpass filter 2-20 Hz

• Constant phase shifts (π/2, π/20) plus random phase
supplement

• Solved on grid with 1503 verticies

• Artificial brain noise



Simulations
Locations of interacton

Phase shift = π
2

Figure: Source localizatios. Green - ground truth, cyan - solution
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Phase shift = π
2

Figure: Source localizatios. Green - ground truth, cyan - solution



Simulations
Locations of interacton

Phase shift = π
2

Figure: Source localizatios. Green - ground truth, cyan - solution



Measured cross-spectrum



Residual error



Simulations
Locations of interacton

Phase shift = π
20

Figure: Source localizatios. Green - ground truth, cyan - solution



Simulations
Locations of interacton

Phase shift = π
20

Figure: Source localizatios. Green - ground truth, cyan - solution



Simulations
Locations of interacton

Phase shift = π
20

Figure: Source localizatios. Green - ground truth, cyan - solution



Real data

• Auditory odd-ball

• Movement-related words

• 120 trials

• 90 bootstrap runs

• Filtered in beta-band (16-25 Hz)



Real data
Locations of interacton

Real data; result after bootstrapping

Figure: Sources localization



Real data
Locations of interacton

Real data; result after bootstrapping

Figure: Sources localization



Real data
Locations of interacton

Real data; result after bootstrapping

Figure: Sources localization



Thank you!
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