Power and shift independent imaging of coherent sources

Dmitrii Altukhov, Alex Ossadtchii

Higher School of Economics, computer science department

$$
\text { June 9-th, } 2016
$$

Studying brain activity...

From evoked responses

... to connectivity analysis

Functional / Effective

Anatomical

Connectivity $=$ rhythms synchronization

Measuring brain activity

ECoG

invasive
fMRI
bad temporal resolution (≈ 1 s)

MEG

EEG

EEG and MEG allow to measure electromagnetic brain activity directly, noninvasively and with good temporal resolution

Two problems: volume conduction and ill-posedness

The idea of PSIICOS on a toy problem

Generative model

$$
\begin{align*}
\binom{m_{1}}{m_{2}}(t) & =\left(\begin{array}{ll}
g_{1}^{1} & g_{2}^{1} \\
g_{1}^{2} & g_{2}^{1}
\end{array}\right)\binom{s_{1}}{s_{2}}(t)= \\
& =\binom{g_{1}^{1}}{g_{1}^{2}} s_{1}(t)+\binom{g_{2}^{1}}{g_{2}^{2}} s_{2}(t)=\vec{g}_{1} s_{1}(t)+\overrightarrow{g_{2}} s_{2}(t) \tag{1}
\end{align*}
$$

$m_{1,2}(t)$ - MEG/EEG measurements
$\left\{g_{i}^{j}\right\}$ - matrix of a forward model
$s_{1,2}(t)$ - unknown timeseries on cortex

The idea of PSIICOS on a toy problem

Time-frequency transformation

Apply time-frequency transform to (1)...

$$
\begin{align*}
&\binom{M_{1}}{M_{2}}(f, t)=\vec{g}_{1} S_{1}(f, t)+\overrightarrow{g_{2}} S_{2}(f, t) \\
& \ldots \text { and write cross-spectrum: } \\
& \mathbf{C}^{M M}(t, f) \stackrel{\text { def }}{=} \mathbf{E}\left\{\mathbf{M}(t, f) \mathbf{M}^{H}(t, f)\right\} \tag{3}
\end{align*}
$$

N.B.

$M_{1}, M_{2}, S_{1}, S_{2}$ after time-frequency transformation are complex

Cross-spectrum in detail

Let's substitute (2) into (3)

$$
\begin{align*}
& \mathbf{C}^{M M}(t, f)=\mathbf{E}\left\{\left(\begin{array}{ll}
M_{1} \bar{M}_{1} & M_{1} \bar{M}_{2} \\
M_{2} \bar{M}_{1} & M_{2} \bar{M}_{2}
\end{array}\right)(f, t)\right\}= \\
& \mathbf{E}\left\{\left(\vec{g}_{1} S_{1}(f, t)+\overrightarrow{g_{2}} S_{2}(f, t)\right) \cdot\left(\vec{g}_{1}^{T} \bar{S}_{1}(f, t)+{\overrightarrow{g_{2}}}^{T} \bar{S}_{2}(f, t)\right)\right\} \tag{4}
\end{align*}
$$

Cross-spectrum in detail

Let's substitute (2) into (3)

$$
\begin{align*}
& \mathbf{C}^{M M}(t, f)=\mathbf{E}\left\{\left(\begin{array}{ll}
M_{1} \bar{M}_{1} & M_{1} \bar{M}_{2} \\
M_{2} \bar{M}_{1} & M_{2} \bar{M}_{2}
\end{array}\right)(f, t)\right\}= \\
& \mathbf{E}\left\{\left(\vec{g}_{1} S_{1}(f, t)+\overrightarrow{g_{2}} S_{2}(f, t)\right) \cdot\left(\vec{g}_{1}^{T} \bar{S}_{1}(f, t)+{\overrightarrow{g_{2}}}^{T} \bar{S}_{2}(f, t)\right)\right\} \tag{4}
\end{align*}
$$

N.B.

$\overrightarrow{g_{i}}$ are real $\Longrightarrow \vec{g}_{i}^{H}=\vec{g}_{i}^{T}$

Cross-spectrum in detail

Let's substitute (2) into (3)

$$
\begin{align*}
& \mathbf{C}^{M M}(t, f)=\mathbf{E}\left\{\left(\begin{array}{ll}
M_{1} \bar{M}_{1} & M_{1} \bar{M}_{2} \\
M_{2} \bar{M}_{1} & M_{2} \bar{M}_{2}
\end{array}\right)(f, t)\right\}= \\
& \mathbf{E}\left\{\left(\vec{g}_{1} S_{1}(f, t)+\overrightarrow{g_{2}} S_{2}(f, t)\right) \cdot\left(\vec{g}_{1}^{T} \bar{S}_{1}(f, t)+{\overrightarrow{g_{2}}}^{T} \bar{S}_{2}(f, t)\right)\right\} \\
& \quad=\overrightarrow{g_{1}}{\overrightarrow{g_{1}}}^{T} \mathbf{E}\left\{S_{1}(f, t) \bar{S}_{1}(f, t)\right\}+\overrightarrow{g_{1}}{\overrightarrow{g_{2}}}^{T} \mathbf{E}\left\{S_{1}(f, t) \bar{S}_{2}(f, t)\right\}+ \\
& \quad+{\overrightarrow{g_{2}}}_{2} \vec{g}_{1}^{T} \mathbf{E}\left\{S_{2}(f, t) \bar{S}_{1}(f, t)\right\}+{\overrightarrow{g_{2}}}_{2} \vec{g}_{2} \mathbf{E}\left\{S_{2}(f, t) \bar{S}_{2}(f, t)\right\} \tag{4}
\end{align*}
$$

Cross-spectrum in detail

Let's substitute (2) into (3)

$$
\begin{align*}
& \mathbf{C}^{M M}(t, f)= \\
& \quad=\overrightarrow{g_{1} \vec{g}_{1}} \vec{E}^{T}\left\{S_{1}(f, t) \bar{S}_{1}(f, t)\right\}+\overrightarrow{g_{1}}{\overrightarrow{g_{2}}}^{T} \mathbf{E}\left\{S_{1}(f, t) \bar{S}_{2}(f, t)\right\}+ \\
& \quad+{\overrightarrow{g_{2}}}_{2} \vec{g}_{1}^{T} \mathbf{E}\left\{S_{2}(f, t) \bar{S}_{1}(f, t)\right\}+{\overrightarrow{g_{2}}}_{2}{ }^{T} \mathbf{E}\left\{S_{2}(f, t) \overline{S_{2}}(f, t)\right\} \tag{4}
\end{align*}
$$

Cross-spectrum in detail

Finally, we've got

$$
\begin{align*}
& \left(\begin{array}{ll}
c_{11}^{M M} & c_{12}^{M M} \\
c_{21}^{M M} & c_{22}^{M} M
\end{array}\right)= \\
& =\overrightarrow{g_{1}}{\overrightarrow{g_{1}}}^{T} c_{11}^{S S}+\overrightarrow{g_{1}}{\overrightarrow{g_{2}}}^{T} c_{12}^{S S}+{\overrightarrow{g_{2}}}_{\vec{g}_{1}}{ }^{T} c_{21}^{S S}+{\overrightarrow{g_{2}}}_{\vec{g}_{2}}{ }^{T} c_{22}^{S S} \tag{5}
\end{align*}
$$

Cross-spectrum in detail

Or in matrix form:

$$
\begin{align*}
\left(\begin{array}{ll}
c_{11}^{M M} \\
c_{21}^{M} M & c_{12}^{M M} \\
c_{22}^{M M} M
\end{array}\right) & = \\
= & \left(\begin{array}{ll}
g_{1}^{1} g_{1}^{1} & g_{1}^{1} g_{1}^{2} \\
g_{1}^{2} g_{1}^{1} & g_{1}^{2} g_{1}^{2}
\end{array}\right) c_{11}^{S S}+\left(\begin{array}{ll}
g_{1}^{1} g_{2}^{1} & g_{1}^{1} g_{2}^{2} \\
g_{1}^{2} g_{2}^{1} & g_{1}^{2} g_{2}^{2}
\end{array}\right) c_{12}^{S S}+ \\
& +\left(\begin{array}{ll}
g_{2} g_{1}^{1} & g_{2}^{1} g_{1}^{2} \\
g_{2}^{2} g_{1}^{1} & g_{2}^{2} g_{1}^{2}
\end{array}\right) c_{21}^{S S}+\left(\begin{array}{ll}
g_{2}^{1} g_{2}^{1} & g_{2}^{1} g_{2}^{2} \\
g_{2}^{2} g_{2}^{1} & g_{2}^{2} g_{2}^{2}
\end{array}\right) c_{22}^{S S} \tag{5}
\end{align*}
$$

Cross-spectrum in detail

Or in matrix form:

$$
\begin{align*}
\left(\begin{array}{ll}
c_{11}^{M M} \\
c_{21}^{M} M & c_{12}^{M M} \\
c_{22}^{M} M
\end{array}\right) & = \\
= & \left(\begin{array}{ll}
g_{1}^{1} g_{1}^{1} & g_{1}^{1} g_{1}^{2} \\
g_{1}^{2} g_{1}^{1} & g_{1}^{2} g_{1}^{2}
\end{array}\right) c_{11}^{S S}+\left(\begin{array}{ll}
g_{1}^{1} g_{2}^{1} & g_{1}^{1} g_{2}^{2} \\
g_{1}^{2} g_{2}^{1} & g_{1}^{2} g_{2}^{2}
\end{array}\right) c_{12}^{S S}+ \\
& +\left(\begin{array}{ll}
g_{2}^{1} g_{1}^{1} & g_{2}^{1} g_{1}^{2} \\
g_{2}^{2} g_{1}^{1} & g_{2}^{2} g_{1}^{2}
\end{array}\right) c_{21}^{S S}+\left(\begin{array}{ll}
g_{2}^{1} g_{2}^{1} & g_{2}^{1} g_{2}^{2} \\
g_{2}^{2} g_{2}^{1} & g_{2}^{2} g_{2}^{2}
\end{array}\right) c_{22}^{S S} \tag{5}
\end{align*}
$$

Volume conduction

We could have thrown the real part of this equation away [Nolte et al., 2004], but we can do better.

Cross-spectrum in detail

Or in matrix form:

$$
\begin{align*}
\left(\begin{array}{ll}
c_{11}^{M M} \\
c_{21}^{M} M & c_{12}^{M M} \\
c_{22}^{M} M
\end{array}\right) & = \\
= & \left(\begin{array}{ll}
g_{1}^{1} g_{1}^{1} & g_{1}^{1} g_{1}^{2} \\
g_{1}^{2} g_{1}^{1} & g_{1}^{2} g_{1}^{2}
\end{array}\right) c_{11}^{S S}+\left(\begin{array}{ll}
g_{1}^{1} g_{2}^{1} & g_{1}^{1} g_{2}^{2} \\
g_{1}^{2} g_{2}^{1} & g_{1}^{2} g_{2}^{2}
\end{array}\right) c_{12}^{S S}+ \\
& +\left(\begin{array}{lll}
g_{2}^{1} g_{1}^{1} & g_{2}^{1} g_{1}^{2} \\
g_{2}^{2} g_{1}^{1} & g_{2}^{2} g_{1}^{2}
\end{array}\right) c_{21}^{S S}+\left(\begin{array}{ll}
g_{2}^{1} g_{2}^{1} & g_{2}^{1} g_{2}^{2} \\
g_{2}^{2} g_{2}^{1} & g_{2}^{2} g_{2}^{2}
\end{array}\right) c_{22}^{S S} \tag{5}
\end{align*}
$$

Volume conduction

We could have thrown the real part of this equation away [Nolte et al., 2004], but we can do better.

Separating powers and interactions

Vectorized equation:

$$
\left(\begin{array}{l}
c_{11}^{M M} \\
c_{12}^{M M} \\
c_{21}^{M M} \\
c_{22}^{M} M
\end{array}\right)=\left(\begin{array}{l}
g_{1}^{1} g_{1}^{1} \\
g_{1}^{1} g_{1}^{2} \\
g_{1}^{2} g_{1}^{1} \\
g_{1}^{2} g_{1}^{2}
\end{array}\right) c_{11}^{S S}+\left(\begin{array}{l}
g_{1}^{1} g_{2}^{1} \\
g_{1}^{1} g_{2}^{2} \\
g_{1}^{2} g_{2}^{1} \\
g_{1}^{2} g_{2}^{2}
\end{array}\right) c_{12}^{S S}+\left(\begin{array}{l}
g_{2}^{1} g_{1}^{1} \\
g_{2}^{1} g_{1}^{2} \\
g_{2}^{2} g_{1}^{1} \\
g_{2}^{2} g_{1}^{2}
\end{array}\right) c_{21}^{S S}+\left(\begin{array}{l}
g_{2}^{1} g_{2}^{1} \\
g_{2}^{1} g_{2}^{2} \\
g_{2}^{2} g_{2}^{1} \\
g_{2}^{2} g_{2}^{2}
\end{array}\right) c_{22}^{S S}
$$

Separating powers and interactions

$$
\left(\begin{array}{l}
c_{11}^{M M} \\
c_{12}^{M M} \\
c_{21}^{M M} \\
c_{22}^{M M}
\end{array}\right)=\left(\begin{array}{l}
g_{1}^{1} g_{1}^{1} \\
g_{1}^{1} g_{1}^{2} \\
g_{1}^{2} g_{1}^{1} \\
g_{1}^{2} g_{1}^{2}
\end{array}\right) c_{11}^{S S}+\left(\begin{array}{l}
g_{1}^{1} g_{2}^{1} \\
g_{1}^{1} g_{2}^{2} \\
g_{1}^{2} g_{2}^{1} \\
g_{1}^{2} g_{2}^{2}
\end{array}\right) c_{12}^{S S}+\left(\begin{array}{c}
g_{2}^{1} g_{1}^{1} \\
g_{2}^{1} g_{1}^{2} \\
g_{2}^{2} g_{1}^{1} \\
g_{2}^{2} g_{1}^{2}
\end{array}\right) c_{21}^{S S}+\left(\begin{array}{c}
g_{2}^{1} g_{2}^{1} \\
g_{2}^{1} g_{2}^{2} \\
g_{2}^{2} g_{2}^{1} \\
g_{2}^{2} g_{2}^{2}
\end{array}\right) c_{22}^{S S}
$$

Let's project equation to the orthogonal complement of these vectors
P :

$$
\begin{gathered}
\mathbf{F}=\left[\operatorname{vec}\left(\mathbf{g}_{1} \mathbf{g}_{1}^{\mathbf{T}}\right), v e c\left(\mathbf{g}_{\mathbf{2}} \mathbf{g}_{\mathbf{T}}^{\mathbf{T}}\right)\right] \\
\mathbf{F}=\mathbf{U S V} \\
\mathbf{U}_{\mathbf{2}}^{\mathbf{T}}=\left[\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right] \\
\mathbf{P}=\mathbf{I}-\mathbf{U}_{\mathbf{2}} \mathbf{U}_{\mathbf{2}}^{\mathbf{T}} \\
\boldsymbol{C}^{\perp}=\boldsymbol{P} \operatorname{vec}\left(\boldsymbol{C}^{\mathbf{M M}}\right)
\end{gathered}
$$

Separating powers and interactions

Finally we get

$$
\mathbf{P} \cdot\left(\begin{array}{l}
c_{11}^{M M} \\
c_{12}^{M M} \\
c_{21}^{M M} \\
c_{22}^{M M}
\end{array}\right)(t)=\mathbf{P} \cdot\left(\begin{array}{l}
g_{1}^{1} g_{2}^{1} \\
g_{1}^{1} g_{2}^{2} \\
g_{1}^{2} g_{2}^{1} \\
g_{1}^{2} g_{2}^{2}
\end{array}\right) c_{12}^{S S}(t)+\mathbf{P} \cdot\left(\begin{array}{l}
g_{2}^{1} g_{1}^{1} \\
g_{2}^{1} g_{1}^{2} \\
g_{2}^{2} g_{1}^{1} \\
g_{2}^{2} g_{1}^{2}
\end{array}\right) c_{21}^{S S}(t)
$$

We know

$$
\mathbf{P},\left(\begin{array}{l}
c_{11}^{M M} \\
c_{12}^{M M} \\
c_{21}^{M M} \\
c_{22}^{M M}
\end{array}\right)(t),\left(\begin{array}{l}
g_{1}^{1} g_{2}^{1} \\
g_{1}^{1} g_{2}^{2} \\
g_{1}^{2} g_{2}^{1} \\
g_{1}^{2} g_{2}^{2}
\end{array}\right),\left(\begin{array}{l}
g_{2}^{1} g_{1}^{1} \\
g_{2}^{1} g_{1}^{2} \\
g_{2}^{2} g_{1}^{1} \\
g_{2}^{2} g_{1}^{2}
\end{array}\right)
$$

We want to find $c_{12}^{S S}(t), c_{21}^{S S}(t)$

Global linear problem

We need to solve

$$
\begin{equation*}
\operatorname{vec}\left(\mathbf{C}^{\perp}(t)\right)=\sum_{i=1}^{L} \sum_{j=1}^{L} \operatorname{vec}\left(\mathbf{g}_{\mathbf{i}} \mathbf{g}_{\mathbf{j}}^{\mathbf{T}}\right)^{\perp} c_{i j}^{s s}(t)+\operatorname{vec}\left(\mathbf{C}^{\mathbf{N N}}(t)\right) \tag{7}
\end{equation*}
$$

$c_{i j}^{s s}(t)$ are the unknown timeseries on cortex which we are to recover

Global linear problem

PSIICOS objection:

$$
\begin{equation*}
\operatorname{vec}\left(\mathbf{C}^{\perp}(t)\right)=\sum_{i=1}^{L} \sum_{j=1}^{L} \operatorname{vec}\left(\mathbf{g}_{\mathbf{i}} \mathbf{g}_{\mathbf{j}}^{\mathbf{T}}\right)^{\perp} c_{i j}^{s s}(t)+\operatorname{vec}\left(\mathbf{C}^{\mathbf{N N}}(t)\right) \tag{8}
\end{equation*}
$$

Define new variables:
Let $\boldsymbol{\Omega}=\operatorname{vec}\left(\mathbf{C}^{\perp}(t)\right)$,
$\boldsymbol{\Gamma}_{\mathbf{k}}=\operatorname{vec}\left(\mathbf{g}_{\mathbf{i}} \mathbf{g}_{\mathbf{j}}^{\mathbf{T}}\right)^{\perp}, \sigma_{\mathbf{k}}(t)=c_{i j}^{s s}, \mathbf{N}(t)=\mathbf{C}^{\mathbf{N N}}(t)$; then (8) will look like:

$$
\begin{equation*}
\boldsymbol{\Omega}(t)=\sum_{k=1}^{L^{2}} \boldsymbol{\Gamma}_{\mathbf{k}} \sigma_{\mathbf{k}}(t)+\mathbf{N}(t) \tag{9}
\end{equation*}
$$

MUSIC scan

 (multiple signal classification, R. O. Schmidt, 1986)One way to estimate coherent sources is to look at correlation of topographies with signal subspase

$$
\begin{gathered}
\boldsymbol{\Omega}=\mathbf{U S V}^{\mathbf{T}} \\
\mathbf{C}_{\mathbf{r}}=\left[\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{r}}\right] \\
A^{(n)}=\left\{\sigma| | \boldsymbol{\Gamma}_{\sigma}^{\mathbf{T}} \mathbf{C}_{\mathbf{r}} \|>\text { threshold }\right\}
\end{gathered}
$$

Simulations

- Three phase-locked networks
- Realistic brain noize ($1 / f$ profile)
- Networks activity overlap in time

Sources locations:

Synchrony profiles:

PSIICOS vs ImCoh

Source reconstruction With VC-projection

With imaginary cross-spectrum:

Real data scan

100 iterations bootstrap + Pairwise clustering [Zalesky, 2012]

0003 _pran, full, total, cond $2,2-6 \mathrm{~Hz}, 0.4-0.7 \mathrm{sec}$

0003_pran, full, total, cond $2,3-7 \mathrm{~Hz}$

0003 _pran, full, total, cond $2,5-9 \mathrm{~Hz}, 0.4-0.7 \mathrm{sec}$

0003_pran, full, total, cond 2, 19-23 Hz, 0.4-0.7 sec

Minimization problem

Linear problem

So (9)

$$
\boldsymbol{\Omega}(t)=\sum_{k=1}^{L^{2}} \boldsymbol{\Gamma}_{\mathbf{k}} \sigma_{\mathbf{k}}(t)+\mathbf{N}(t)
$$

Rewrites as

$$
\begin{equation*}
\frac{1}{2}\left\|\boldsymbol{\Omega}(t)-\sum_{k=1}^{L^{2}} \boldsymbol{\Gamma}_{\mathbf{k}} \sigma_{\mathbf{k}}(t)\right\|_{\text {Fro }}^{2} \longrightarrow \min \tag{10}
\end{equation*}
$$

Minimization problem

Linear problem

$$
\begin{equation*}
\frac{1}{2}\left\|\boldsymbol{\Omega}(t)-\sum_{k=1}^{L^{2}} \boldsymbol{\Gamma}_{\mathbf{k}} \sigma_{\mathbf{k}}(t)\right\|_{\text {Fro }}^{2} \longrightarrow \min \tag{10}
\end{equation*}
$$

III-posed problem! as $L^{2} \approx 10^{6}$ and $\Omega(t)$ is $\approx 10^{4} \times 1$, i.e. need to find $\approx 10^{6}$ unknowns from $\approx 10^{4}$ equations. Thus, regularization is required

Minimization problem

Linear problem

$$
\begin{equation*}
\frac{1}{2}\left\|\boldsymbol{\Omega}(t)-\sum_{k=1}^{L^{2}} \boldsymbol{\Gamma}_{\mathbf{k}} \sigma_{\mathbf{k}}(t)\right\|_{\text {Fro }}^{2}+\lambda \sum_{k=1}^{L^{2}} \sqrt{\left\|\sigma_{\mathbf{k}}(t)\right\|_{F r o}} \longrightarrow \min \tag{10}
\end{equation*}
$$

Or in matrix notation

$$
\begin{equation*}
\frac{1}{2}\|\boldsymbol{\Omega}-\boldsymbol{\Gamma} \boldsymbol{\Sigma}\|_{F r o}^{2}+\lambda \sum_{k=1}^{L^{2}} \sqrt{\left\|\boldsymbol{\Sigma}_{k}\right\|_{F r o}} \quad \longrightarrow \min \tag{11}
\end{equation*}
$$

Mixed-norm regularization

Regularization term $\sum_{k=1}^{L^{2}} \sqrt{\left\|\boldsymbol{\Sigma}_{k}\right\|_{F r o}}$ has a $l_{2,0.5}$-norm penalty.

Figure: Solution structure for different regularization norms

Penalties are different for time and space directions in matrix S!!

Making problem convex...

$$
\begin{array}{r}
\boldsymbol{\Sigma}^{(n)}=\underset{\boldsymbol{\Sigma}}{\operatorname{argmin}} \frac{1}{2}\|\boldsymbol{\Omega}-\boldsymbol{\Gamma} \boldsymbol{\Sigma}\|_{F r o}^{2}+\lambda \sum_{k=1}^{L^{2}} \frac{\left\|\boldsymbol{\Sigma}_{k}\right\|_{\text {Fro }}}{2 \cdot \sqrt{\left\|\boldsymbol{\Sigma}_{k}^{(n-1)}\right\|_{F r o}}}= \\
=\underset{\boldsymbol{\Sigma}}{\operatorname{argmin}} \frac{1}{2}\|\boldsymbol{\Omega}-\boldsymbol{\Gamma} \boldsymbol{\Sigma}\|_{F r o}^{2}+\lambda \sum_{k=1}^{L^{2}} \frac{1}{\mathbf{w}_{\mathbf{k}}^{(\mathbf{n})}}\left\|\boldsymbol{\Sigma}_{k}\right\|_{\text {Fro }} \tag{12}
\end{array}
$$

I.e. we approximate $l_{2,0.5}$-norm with weighted $l_{2,1}$-norm and get a convex problem. Similar approach is used in IRLS algorithm (Iterative Reweighted Least Squares)

Finally...

Ultimately, we get:

$$
\begin{align*}
\boldsymbol{\Sigma}^{(n)}=\underset{\boldsymbol{\Sigma}}{\operatorname{argmin}} \frac{1}{2}\left\|\boldsymbol{\Omega}-\boldsymbol{\Gamma} \mathbf{W}^{\mathbf{n}} \boldsymbol{\Sigma}\right\|_{F r o}^{2}+\lambda \sum_{k=1}^{L^{2}}\left\|\boldsymbol{\Sigma}_{k}\right\|_{F r o}= \\
=\underset{\boldsymbol{\Sigma}}{\operatorname{argmin}} \frac{1}{2}\left\|\boldsymbol{\Omega}-\boldsymbol{\Gamma}^{(\mathbf{n})} \boldsymbol{\Sigma}\right\|_{\text {Fro }}^{2}+\lambda \sum_{k=1}^{L^{2}}\left\|\boldsymbol{\Sigma}_{k}\right\|_{\text {Fro }} \tag{13}
\end{align*}
$$

Outline of the algorithm

Repeat

(1) Solve convex problem

$$
\boldsymbol{\Sigma}^{(n)}=\underset{\boldsymbol{\Sigma}}{\operatorname{argmin}} \frac{1}{2}\left\|\boldsymbol{\Omega}-\boldsymbol{\Gamma}^{(\mathbf{n})} \boldsymbol{\Sigma}\right\|_{\text {Fro }}^{2}+\lambda \sum_{k=1}^{L^{2}}\left\|\boldsymbol{\Sigma}_{k}\right\|_{\text {Fro }}
$$

(we use Block-Coordinate Descent or BCD with duality gap stopping critereon)
(2) Recalculate $\boldsymbol{\Gamma}^{(\mathbf{n})}$ based on $\boldsymbol{\Sigma}^{(n-1)}$
till convergence

Active set strategy

So, we have $\approx 10^{6} \times 10^{4}$ linear system for each timestep or $\approx 10^{6} \times 10^{4} \times 500$ in total. How to solve it?

Active set strategy

Active set definition

Locations that are correlated with the residual error:

$$
\begin{equation*}
A^{(n)}=\left\{\sigma \mid\left\|\boldsymbol{\Gamma}_{\sigma}^{\mathbf{T}}\left(\boldsymbol{\Omega}-\boldsymbol{\Gamma} \boldsymbol{\Sigma}^{(\mathbf{n}-\mathbf{1})}\right)\right\|_{F r o}>\lambda\right\} \tag{14}
\end{equation*}
$$

Usage:

Pick locations from $A^{(n)}$; if solution is bad, expand $A^{(n)}$

Outline of the algorithm

Repeat

(1) Solve convex problem on the active set

$$
\boldsymbol{\Sigma}_{\mathbf{A}}{ }^{(n)}=\underset{\boldsymbol{\Sigma}_{\mathbf{A}}}{\operatorname{argmin}} \frac{1}{2}\left\|\boldsymbol{\Omega}-\boldsymbol{\Gamma}_{\mathbf{A}}^{(\mathbf{n})} \boldsymbol{\Sigma}_{\mathbf{A}}\right\|_{F r o}^{2}+\lambda \sum_{k_{A}=1}^{\text {size }(A)}\left\|\boldsymbol{\Sigma}_{k_{A}}\right\|_{F r o}
$$

(2) If duality gap is small, proceed to st. 3, if not, expand A and go to step 1
(3) Recalculate $\boldsymbol{\Gamma}^{(\mathbf{n})}$ based on $\boldsymbol{\Sigma}^{(n-1)}$
till convergence

Simulated data

- 3 networks on real MRI grids
- Induced activity (same frequencies $=10 \mathrm{~Hz}$, different envelopes for each network)
- Bandpass filter 2-20 Hz
- Constant phase shifts $(\pi / 2, \pi / 20)$ plus random phase supplement
- Solved on grid with 1503 verticies
- Artificial brain noise

Simulations

Locations of interacton

Phase shift $=\frac{\pi}{2}$

Az: 204El; 0
Figure: Source localizatios. Green - ground truth, cyan - solution

Simulations

Locations of interacton

Phase shift $=\frac{\pi}{2}$

Figure: Source localizatios. Green - ground truth, cyan - solution

Simulations

Locations of interacton

Phase shift $=\frac{\pi}{2}$

Figure: Source localizatios. Green - ground truth, cyan - solution

Measured cross-spectrum

Residual error

[^0]
Simulations

Locations of interacton

Phase shift $=\frac{\pi}{20}$

Figure: Source localizatios. Green - ground truth, cyan - solution

Simulations

Locations of interacton

Phase shift $=\frac{\pi}{20}$

Figure: Source localizatios. Green - ground truth, cyan - solution

Simulations

Locations of interacton

Phase shift $=\frac{\pi}{20}$

Figure: Source localizatios. Green - ground truth, cyan - solution

- Auditory odd-ball
- Movement-related words
- 120 trials
- 90 bootstrap runs
- Filtered in beta-band ($16-25 \mathrm{~Hz}$)

Real data

Locations of interacton

Real data; result after bootstrapping

Figure: Sources localization

Real data

Locations of interacton

Real data; result after bootstrapping

Figure: Sources localization

Real data

Locations of interacton

Real data; result after bootstrapping

Figure: Sources localization

Thank you!

$$
4 \square>4 \text { 吕 } 1 \text { 引 }
$$

[^0]:

