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Breaking and Fixing Public-Key Kerberos 

 Part of ongoing formal analysis of Kerberos 5 suite 
• Previously studied core part of protocol and cross-realm 

authentication 

• Focus on PKINIT, public-key extension to Kerberos  

 Attack on PKINIT found when using “public-key mode” (one 
of two possible modes) 
• Breaks binding client’s request and the response 

• Prevents full authentication and confidentiality 

 Formal verification of fixes preventing attack 
• Close, ongoing interactions with IETF Working Group 

 Our work caused an August 2005 Microsoft security patch for 
Windows 2000, Windows XP, and Windows 2003 

www.microsoft.com/technet/security/bulletin/MS05-042.mspx 

Cervesato, Jaggard, Scedrov, Tsay, Walstad 

http://www.microsoft.com/technet/security/bulletin/MS05-042.mspx
http://www.microsoft.com/technet/security/bulletin/MS05-042.mspx
http://www.microsoft.com/technet/security/bulletin/MS05-042.mspx


PKINIT Attack and Fixes (Overview) 

Protocol level attack on PKINIT-25 
• Not a problem with crypto or implementation  
• Kerberos server believes he is talking to the attacker 
• Client believes she is talking to the Kerberos server 
• Attacker knows the key shared by the client and Kerberos 

server 

Possible because the Kerberos server does not sign 
data identifying the client 
• Attacker constructs request based on client’s request 
• Kerberos server signs data from client, sends in reply to 

attacker 
• Attacker forwards this to client after learning keys 
• Ran Canetti, consulted on details of spec., independently 

hypothesized the possibility of an “identity misbinding” attack 

PKINIT-27 intended to defend against this attack 
• Kerberos server signs data derived from client’s identity 



 Impact 

Our work caused August 2005 Microsoft security patch 
and is cited there 

www.microsoft.com/technet/security/bulletin/MS05-042.mspx 
 

Vulnerability in linux, in the Heimdal protocol 
    (linux version of Kerberos)  
 

Although other vulnerabilities viewed as more pressing 
for IT managers, this attack has real-world effects and 
highlights a design vulnerability 
• Remote code execution, privilege elevation seem to arise from 

coding errors, not design flaws 
• No known exploit using our attack 

http://www.microsoft.com/technet/security/bulletin/MS05-042.mspx
http://www.microsoft.com/technet/security/bulletin/MS05-042.mspx
http://www.microsoft.com/technet/security/bulletin/MS05-042.mspx


Interactions with CERT and IETF 
 Providing forensics to CERT 
 Close collaboration with IETF Kerberos WG 

• Discussed possible fixes we were considering 
• Attack announced on WG list in July 2005 
• We verified a fix the WG suggested 

– This was incorporated into PKINIT-27 and into RFC 4556  
• Presented this work at IETF-63 

– Discussed possible fixes and our analysis of these 
– Useful discussions with WG participants on other areas for work 

• Participating in WG subsequent meetings 

 Impact of formal methods in IETF security area 
• At security-area level, they want to see more interaction with formal 

methods 



Kerberos Overview 
 

Goals 
• Repeatedly authenticate a client to multiple servers on single 

log-on 
– Remote login, file access, print spooler, email, directory, … 

 

A real world protocol 
• Part of Windows, Linux, Unix, Mac OS, … 
• Cable TV boxes, high availability server systems, … 
• Standardization and ongoing extension/refinement by IETF (very 

active --- 10 documents) 
– Current version for Kerberos is RFC 4120 



Abstract Kerberos Messages 
Client 

C 

KAS 
K 

TGS 
T 

Server 
S 

Authenticate C for U 

Credentials (TGT)
 

Want to use S; here’s the TGT 

Credentials to use S (ST) 

Want to use S; here’s the ST
 

Ok
 

  TGT = {AK,C,tK}kT
 

ST = {SK,C,tT}kS 

C, T, n1 

TGT, {C,t}AK, C, S, n2 

C, ST, {SK,n2,S}AK 

ST, {C,t’}SK 

{t’}SK 

Replaced 
by 
PKINIT 

C, TGT, {AK,n1,T}kC 



Public-Key Kerberos 

Extend basic Kerberos 5 to use PKI 
• Change first round to avoid long-term shared keys 
• Originally motivated by security 

– If Kerberos server is compromised, don’t need to regenerate shared 
keys 

– Avoid use of password-derived keys 
• Current emphasis on administrative convenience 

– Avoid the need to register in advance of using Kerberized services 

This extension is called PKINIT 
• Current version is RFC 4556 
• We found attack in -25; -26 does not change the relevant design 
• Versions included in Windows and Linux (called Heimdal) 
• Implementation developed by CableLabs (for cable boxes) 
• Apparently not in MIT version 



Two Modes 

In general, no key kC shared between C and K 
• Credentials for C instead encrypted under a temporary  key k 

– How to generate and deliver k? 

Public-key encryption 
• k is generated by K 
• k encrypted under C’s public key and is signed by K 
• Attack is against this mode 

Diffie-Hellman 
• k is generated by DH using data from C and K 
• C and K each send signed data to contribute to DH key 

– Option for ‘reuse’ of the shared secret 
• CableLabs appears to be only implementation of this 
• Initial inspection did not turn up attacks against this mode 



Public-Key Encryption Mode 

  tC, n2, CertC, [tC, n2]skC, C, T, n1 

  {{CertK, k, n2, [k, n2]skK}}pkC, C, {kCT,C}kT
, {kCT,n1,T}k 

C                                                                    K 

 {kCT, C}kT
, {C}kCT

, C, S, n3 

  C, {kCS, C}kS
, {kCS, n3, S}kCT 

C                                                                    T 

 {kCS, C}kS
, {C, t}kCS 

  {t}kCS 

C                                                                    S 

C                                                                    K 

C                                                                    T 

C                                                                    S 



Formalizing the Request 

Our formalization of pa-data includes 
• tC = cusec/ctime  (in pkAuthenticator) 
• n2 = nonce (in pkAuthenticator) 
• [tC, n2]skC = signature (in signerInfos) over tC, n2 

using C’s secret key skC 

Our formalization of req-body includes 
• C = cname 
• T = sname 
• n1 = nonce 

 
tC, n2, [tC, n2]skC, C, T, n1 



Formalizing the Reply 

Our formalization of pa-data includes 
• k = replyKey (in ReplyKeyPack) 
• n2 = nonce (in ReplyKeyPack), from AS-REQ 
• [k, n2]skK = signature with K’s secret key skK 
• {…}pkC is encryption with C’s public key pkC 

C = cname in AS-REP 
X = ticket in AS-REP 
Our formalization of enc-part includes 

• AK = key 
• n1 = nonce 
• tK = authtime 
• T = sname 
• {…}k is encryption with the reply key k 

 
{k, n2, [k, n2]skK}pkC, C, X, {AK, n1, tK, T}k 



PKINIT Attack and Fixes (Overview) 

Protocol level attack on PKINIT-25 
• Not a problem with crypto or implementation  
• Kerberos server believes he is talking to the attacker 
• Client believes she is talking to the Kerberos server 
• Attacker knows the key shared by the client and Kerberos 

server 

Possible because the Kerberos server does not sign 
data identifying the client 
• Attacker constructs request based on client’s request 
• Kerberos server signs data from client, sends in reply to 

attacker 
• Attacker forwards this to client after learning keys 
• Ran Canetti, consulted on details of spec., independently 

hypothesized the possibility of an “identity misbinding” attack 

PKINIT-27 intended to defend against this attack 
• Kerberos server signs data derived from client’s identity 



C 

C 

I 

I K 

K 

tC, n2, CertC, [tC, n2]skC, C, T, n1 

tC, n2, CertI, [tC, n2]skI, I, T, n1  

{k, n2, [k, n2]skK}pkC, C, X, {AK, …}k 

•Principal P has secret key skP, public key pkP 
•{msg}key is encryption of msg with key 
•[msg]key is signature over msg with key 

{k, n2, [k, n2]skK}pkI, I, X, {AK, …}k 

At time tC, client C requests a ticket for ticket server T (using nonces n1 and n2): 

The attacker I intercepts this, puts her name/signature in place of C’s: 

I 

Kerberos server K replies with credentials for I, including: fresh keys 
k and AK, a ticket-granting ticket X, and K’s signature over k,n2: 

I decrypts, re-encrypts with C’s public key, and replaces her name with C’s: 

I 

•I knows fresh keys k and AK 
•C receives K’s signature over 
k,n2 and assumes k, AK, etc., 
were generated for C (not I) 

(Ignore most of enc-part) 

The Attack 



Consequences of the Attack 

The attacker knows the keys C uses; she may: 
• Impersonate servers (in later rounds) to the client C 
• Monitor C’s communications with the end server 

Other notes 
• Attacker must be a legal user 
• C is authenticated to end server as attacker (not as C) 
• DH mode appears to avoid this attack 

 

 



After the First Round 

Both the attacker I and client C know the 
keys k and AK 
• C believes the KDC produced k and AK for C 

Attacker may monitor communications 
• Attacker must put her name into the TGS-REQ 

and AP-REQ messages to match the tickets 

• Attacker learns keys in TGS-REP and AP-REP 

Attacker may impersonate servers 
• Instead of forwarding modified –REQ messages, 

attacker may simply forge –REP messages herself 



Desired Authentication Property 

If a client C processes a message containing 
KDC-generated public-key credentials, then 
some KAS K produced a set of such 
credentials for C. 

The attack shows this property does not 
hold in pk-init-25/-26 

This property holds if: 
• The KAS signs k, F(C, ni); or 

• The AS-REP is as in pk-init-27 

 



Preventing the Attack in General 

Sign data identifying client 
• The KDC signs k, F(C, ni) 
• Assume F(C, n) = F(C’, n’) implies C = C’ and n = n’ 
• AS-REQ message now formalized as 

 
{k, F(C, ni), [k, F(C, ni)]skK}pkC, C, X, {AK, n1, tK, T}k  

 

We gave a formal proof that this guarantees 
authentication 
• Does cname/crealm uniquely identify client? 
• Added secrecy properties if F(C, n) identifies 

pkC? 



pk-init-27 and the Attack 

In the change implemented in pk-init-27: 
• The KDC signs k, cksum (i.e., cksum in place of n2) 

– k is replyKey 
– cksum is checksum over AS-REQ 
– Easier to implement than signing C, k, n2 

• AS-REP now formalized as 
 

{k, cksum, [k, cksum]skK}pkC, C, X, {AK, n1, tK, T}k  

 

We gave a formal proof that this guarantees 
authentication 
• Assume checksum is preimage resistant 
• Assume KDC’s signature keys are secret 
• Subsequently carried out a more detailed, cryptographic 

proof  



ReplyKeyPack in pk-init-26 

ReplyKeyPack ::= SEQUENCE { 

 replyKey  [0] EncryptionKey, 

  -- Contains the session key used to encrypt the 

  -- enc-part field in the AS-REP. 

 nonce   [1] INTEGER (0..4294967295), 

  -- Contains the nonce in the PKAuthenticator of the 

  -- request. 

... }  



ReplyKeyPack in pk-init-27 

ReplyKeyPack ::= SEQUENCE { 
 replyKey  [0] EncryptionKey, 
  -- Contains the session key used to encrypt the 
  -- enc-part field in the AS-REP. 
 asChecksum [1] Checksum, 
  -- Contains the checksum of the AS-REQ 
  -- corresponding to the containing AS-REP. 
  -- The checksum is performed over the type AS-REQ. 
  -- The protocol key [RFC3961] of the checksum is the 
  -- replyKey and the key usage number is 6. 
  -- If the replyKey's enctype is "newer" [RFC4120] 
  -- [RFC4121], the checksum is the required 
  -- checksum operation [RFC3961] for that enctype. 
  -- The client MUST verify this checksum upon receipt 
  -- of the AS-REP. 
... }  



Corrected Public-Key Kerberos 

 
 Extend basic Kerberos 5 to use Public Keys 

• Change first round to avoid long-term shared keys (kc) 
 

 Motivations 
• Administrative convenience: Avoid the need to register in 

advance of using Kerberized services 
• Security: Avoid use of password-derived keys 

– Smartcard authentication support instead 

Client  
C 

KAS 
K CertC, [tC, n2]skC, C,T, n1 

{{CertK, [k,ck]skK}}pkC, C, TGT, {AK,n1,T}k 

TGT ={AK,C,tK}kT
 , ck = Hashk(CertC, [tC, n2]skC, C,T, n1) 



Cryptographically Sound Proofs of 
Security Properties of Kerberos   

 
Proofs by hand use the Cryptographic Library by 

Backes, Pfitzmann, and Waidner 
• Pair of system models: An abstract ideal cryptographic library 

and a real cryptographic library 
• Ideal cryptographic library is a Dolev-Yao-style deterministic 

formalism 
• Results in the ideal cryptographic library hold for the real 

cryptographic library (real system “as secure as” ideal system)  
• This requires implementation of provably secure crypto 

primitives  
– E.g. IND-CCA2 asymmetric encryption, UF-CMA signature, IND-

CCA2 + INT-CTXT symmetric encryption 

Backes, Cervesato, Jaggard, Scedrov, Tsay 



Cryptographically Sound Proofs of 
Security Properties of Kerberos  
 

Our cryptographic results for Kerberos and for 
Kerberos with corrected PKINIT: 
 
• Server-Client Entity Authentication: If the server completes 

a protocol run, apparently with client C, then, with 
overwhelming probability, C started the protocol with some 
KAS  K  and requested a service ticket from some TGS. 
Moreover, if a client C completes a protocol run, apparently 
with server S, then, with overwhelming probability, S sent a 
valid reply (=last protocol message) to C. 

 
• Key Secrecy: An optional subsession key exchanged between 

server and client is indistinguishable from a fresh random key 
for any polynomial time adversary 

Backes, Cervesato, Jaggard, Scedrov, Tsay 



Mechanized proofs of security 

Blanchet, Jaggard, Tsay, Scedrov 

Cryptographically sound proof of 
authentication 

Blanchet’s tool CryptoVerif based on 
polynomial-time probabilistic process calculus 
[Lincoln, Mitchell, Ramanathan, Scedrov, 
Teague]  

Subtleties with crypto assumptions 



Mechanization Context 

Analysis of Cryptographic Protocols 

Commercial 
Protocols 

e.g.  
•TLS 
•Kerberos  
•IKE  

Computational 

•Complexity theory 
•Probability theory 
•Strong security guarantees 
 

•Algebra of terms 
•Good for checking protocol structure 
•Limited adversary capabilities 

Symbolic/ 
Dolev-Yao 

Academic  
Protocols 

e.g.  
•NSL 
•Otway-Rees 

•Yahalom 
 

Hand proofs in Computational model prone to human error, and  
even in Dolev-Yao model highly time consuming for more complex protocols  

Kerberos, PKINIT 



Formalization and Analysis of Kerberos 5 with and 
without its public-key extension PKINIT (in Public-
Key mode), a public-key extension to Kerberos 5, 
using the CryptoVerif tool 
 

First computationally sound mechanized proof of a 
full  industrial-sized protocol 
• Especially PKINIT is complex, involving both asymmetric and 

symmetric cryptographic primitives 
• Kerberos and PKINIT are available for all major operating 

systems, e.g. implemented in Microsoft Windows 
(Vista/XP/2000) and Windows Server 2003 

 

Generalization of Key Usability notion 

Mechanization Overview (1) 



Mechanization Overview (2) 

Part of an ongoing analysis of Kerberos 5 suite 
• Previously discovered a flaw in a draft version of PKINIT used in 

Windows (XP/2000) and Windows Server 2003 
– Joint work with Cervesato and Walstad 

• Previously conducted by-hand computational proofs of PKINIT and Kerberos 
– Joint work with Cervesato and Backes using the Backes-Pfitzmann-

Waidner model (BPW) 
 

CryptoVerif tool works directly in the computational 

model 
• So far tested only on academic protocols, e.g. NSL, Otway-Rees, 

Yahalom 
• Our work provides evidence for the suitability of CryptoVerif for 

industrial protocols 



Related Protocol Work 

 [Butler, Cervesato,Jaggard, Scedrov,Walstad ‘02, ‘03, ‘06], 
[Cervesato,Jaggard,Scedrov,Tsay,Walstad ’06]: Symbolic analysis of 
Kerberos (basic and public-key) using Multi Set Rewriting  (Includes the 
attack on PKINIT draft version) 

 [Backes,Cervesato,Jaggard,Scedrov,Tsay ’06]: Computational Sound by-
hand Proofs of Kerberos using the BPW model 

 [He,Sundararajan,Datta,Derek,Mitchell ’05]: By-hand symbolic 
correctness proof of IEEE 802.11i and TLS using Protocol Composition 
Logic 

 [Roy,Datta,Derek,Mitchell ’07]: By-hand correctness proofs  of Kerberos 
(incl. Diffie-Hellman mode of PKINIT) using Computational Protocol 
Composition Logic 

 [Meadows ’99] : Symbolic analysis of IETF IKE with NRL protocol 
analyzer 

 [Bella,Paulson ’97] / [Paulson ’97]: Symbolic analysis with Isabelle 
theorem prover of Kerberos 4 / TLS 
… 



More Mechanized Prover 
Background 

 [Blanchet’06,’07], [Blanchet,Pointcheval ’06]: CryptoVerif; 
computationally sound mechanized prover 

 [Backes,Basin,Pfitzmann,Sprenger,Waidner ’06]: Beginnings of 
automation of BPW using Isabelle theorem prover 

 [Armando,Basin,Boichut,Chevalier,Compagna,Cuellar,Hankes 
Drielsma,Heám,Kouchnarenko,Mantovani,Mödersheim, von 
Oheimb,Rusinowitch,Santiago,Turuani,Viganò,Vigneron ’05]: 
AVISPA tool for automated symbolic validation of protocols and 
applications 

 [Blanchet ’04]: ProVerif; automatic Dolev-Yao verification tool 
 [Cremers ’06]: Scyther; automatic Dolev-Yao verification tool 
 [Cortier,Warinschi ’05]: Computationally sound, automated 

symbolic analysis using Casrul tool 
… 



Cryptographic Assumptions 

Public-key encryption assumed to be IND-CCA2, 
signature scheme assumed to be UF-CMA 
 

Symmetric encryption implemented as encrypt-then-
MAC, with IND-CPA encryption and (W)UF-CMA 
message authentication code 
• This implies IND-CCA2 and INT-PTXT [Bellare,Namprempre’00] 

 

Hash function is collision resistant 



Authentication Properties (1) 

 We can show with CryptoVerif that following holds with 
overwhelming probability 

 

1. Authentication of the KAS to the client [inj] 
• If an honest client receives what appears to be a valid reply from 

the KAS, then the KAS generated a reply or the client 

2. Authentication of request for ST 
• If an honest TGS processes a valid request for a service ticket 

ST, then the ticket in the request was generated by the KAS and 
the authenticator included in the request was generated by the 
honest client (modulo the MACs).  

3. Authentication of TGS to client [inj] 
• If an honest client sees that appears to be a valid reply to  a 

request for a ST for an honest server S from an honest TGS, 
then the TGS generated a reply for the client. 



Authentication Properties (2) 

4. Authentication of request to server 
• If an honest server S processes a valid request, ostensibly 

from an honest client C, containing a service ticket ST and a 
session key pair (SK, mSK), then some honest TGS generated 
(SK, mSK) for C to use with S and also created ST (modulo 
the MAC). Furthermore,  C created the authenticator (modulo 
the MAC).  

 
5. Authentication of server to client 

• If an honest client C sees a valid reply from an honest server 
S, then this reply was generated by S (modulo the MAC). 



Key Secrecy Properties 

1. Secrecy AK 
• If an honest client C finishes an AS exchange with the KAS, 

where the KAS generated the authentication key pair (AK, 
mAK) for the use between C and an honest TGS T, then AK 
and mAK are secret w.r.t. the real-or-random definition of 
secrecy 

2. Secrecy of SK 
• If an honest client finishes a TG exchange with an honest TGS, 

where the TGS generated the service key pair (SK, mSK) for the 
use between C and an honest server S, then SK and mSK are secret 
with respect to the real-or-random definition of secrecy 
 

 Note: The keys AK and SK  will no longer be indistinguishable from 
random once they are used in a client C’s request to the TGS T and the 
server S, respectively  



Key Usability  

• Notion of Key Usability introduced by Datta, Derek, 
Mitchell, and Warinschi in 2006  

• Weaker than key indistinguishability 
• Important for protocols that perform operations 

with a  key during a run and allow for the future use 
of this key 

• An exchanged key is usable if it is `good’ for future 
cryptographic operations 

• Definition parallels definition of key indistinguishability 
• Two phase attacker (Ae, Ac): first Ae interacts with protocol 

sessions, then Ac tries to win an attack game that uses exchanged 
key, e.g.  IND-CCA2 against an encryption scheme 

• During second phase, Ac cannot interact with protocol sessions 



Key Usability with CryptoVerif 
 

• Stronger version of key usability (w.r.t to IND-CCA2 
encryption), where adversary can still interact with 
uncompleted protocol sessions during the attack game: 

• The adversary A first interacts with polynomial many protocol sessions 
• At the request of A, a session id sid is drawn at random and A is given 

access to LR-encryption oracle Ek and a decryption oracle Dk , where k is the 
key locally output in sid 

• A plays variant of an IND-CCA2 game where 
– A may interact with uncompleted protocol sessions 

– But all sessions of the protocol do not accept ciphertexts output by Ek when they 
reach a point of the protocol at which at least one session expects to receive a 
message encrypted under the key k 

 

• Discussion:  
• Stronger notion (at the very least) 
• More realistic ? 
• Yet another definition of key usability (+ Comp Thm) ? 



Key Usability in Kerberos 

1. Usability of AK 
• If an honest client C finishes a session of basic or public-key 

Kerberos involving the KAS and an honest TGS, then the 
authentication key pair (AK, mAK) is (strongly) usable for IND-
CCA2 secure encryption (under mentioned crypto assumptions) 
 
 

2. Usability of SK 
• If an honest client C finishes a session of basic or public-key 

Kerberos involving the KAS, an honest TGS, and an honest server 
S, then the session key pair (SK, mSK) is (strongly) usable for 
IND-CCA2 secure encryption (under mentioned crypto 
assumptions)   



Conclusions (1) 

 Extended formalization of Kerberos 5 
• Cross-realm and public-key cases 

 Found a MITM attack against public-key encryption 
mode in PKINIT-25 / PKINIT-26 

• Protocol attack with industrial impact (MS security bulletin) 
• Formulated a general fix defending against this attack 

 Close collaboration with IETF WG 
• Discussion and analysis of possible fixes 

– We’ve analyzed the fix employed in PKINIT-27 

 Cryptographically sound security proofs of security 
properties of basic Kerberos 5 and of corrected 
public-key Kerberos, by hand and in the CryptoVerif 
tool 

 



Conclusions (2) 

 Proof of authentication and secrecy properties of basic and 
public-key Kerberos using the tool CryptoVerif 
• Extended our Kerberos analysis project to include mechanized 

proofs 

 
 First mechanized proof of authentication and secrecy for a 

full commercial/real-life protocol directly in the 
computational model 
• CryptoVerif seems suitable for industrial protocols 

 

 Stronger version of key usability 
• Proved mechanically for Kerberos 



Future work 

Using weaker crypto 
 

Stay closer to Specs 
• Adding additional fields from specs 

 

Yet another notion of Key Usability ? 
 

Diffie-Hellman mode of PKINIT 
• Mechanized proof in the computational model 

– Hand Proof exists in Computational PCL                     
[Roy,Datta,Derek,Mitchell ’07] 

Other protocols: web services, SOA, privacy, trust, … 



Thank You! 
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Proof Sketch for General Defense 

Assume 
• Client receives AS-REP with [k, F(C, ni)]skK 
• KAS’s signature key is secret 
• Signatures are unforgeable 
• F(C, n) = F(C’, n’) implies C = C’ and n = n’ 

Proof sketch 
• Signature in reply must come from the KAS K 
• K would only produce this signature in response to 

a request containing C’ such that F(C’, n’)  = F(C, n) 
• Collision-freeness of F implies that K created the 

reply for C 



Proof Sketch for pk-init-27 

Assume 
• Client receives AS-REP as in pk-init-27 

• KAS’s signature key is secret 

• Signatures are unforgeable 

• Checksums are collision-free 

Proof sketch 
• Signature in AS-REP must come from the KAS K 

• K would only produce this signature in response to 
an AS-REQ whose checksum is the signed value 

• Collision-freeness of checksums implies that the 
AS-REQ was as claimed (including C’s name) 

 



CryptoVerif Basics (1) 

CryptoVerif (CV) can prove secrecy properties and 
correspondence asssertions for cryptographic 
protocols, and also cryptographic primitives 
• Secrecy w.r.t. real-or-random definition 
• Authentication through [injective] correspondence assertions  [inj:]  ==> 

[inj:]  
• Proof of cryptographic primitives in the random oracle model 

CV works directly in the Computational Model 
• Protocols represented as processes in calculus inspired by pi-calculus, the 

calculi by [Lincoln,Mitchell,Ramanathan,Scedrov,Teague ’98, ’99, ’02] and 
[Laud ’05]; with probabilistic semantics 

• Processes Q and Q’ are observationally equivalent (Q≈ Q’) if, intuitively, an 
adversary has negligible probability of distinguishing Q from Q’ 



CryptoVerif Basics (2) 

 Proofs as sequences of games 
• Construct sequence Q0 ≈Q1 ≈… ≈ Qn-1≈Qn, where Q0 formalizes the 

investigated protocol and desired security properties are obvious in Qn 

• CV uses cryptographic and syntactic transformations to reach Qj  from 
Qj-1 
 

 Subtleties with crypto assumptions 
 

 Note: CryptoVerif is sound but not complete 
• Properties it cannot prove are not necessarily invalid 
• CV operates in different modes:  

– Automatic mode (if only symmetric crypto is used) 
– Interactive mode (if public-key crypto is used) 

• Requires user to type in commands that determine the next game 
transformation 
 

 Static corruption of protocol participants  



CryptoVerif Basics (3) 

Little example: 
 
QC = !    <= N c2[iC ] (hT : tgs); new n1 : nonce;  

     c3[iC ] C, hT, n1; 

     c4[iC ] (= C, m1 : maxmac, mac1 : macs, m2 : maxmac, mac2 : macs);  
     if check(m2 , mKC , mac2 ) then  
         let injbot(concat1(AK , mAK , = n1 , = hT )) = dec(m2, KC ) in  
     event eC(hT, n1, m, m2)  … 
 

CryptoVerif proves authentication of K to C by proving the query: 

       inj-event( eC(T , n, x, y)) ⇒ inj-event( eK(C, T , n, z , y))   

 

 Runtime: Authentication properties of 
• Basic Kerberos: ca. 7 s, 70 game transformations 
• Public-key Kerberos: ca. 1 min 40 s, 124 game transformations  

iC 



Definition: Strong Key Usability 
Let =(K, E, D)  S a symmetric encryption scheme, b  {0,1}, ∑ a  
key exchange protocol,  an adversary. Consider following experiment 
 Expb 

A, ∑, (): 
• First, A is given  and A can interact with polynomially many sessions of ∑ 

• At some point, at the request of A, a session identifier sid is drawn at random and 
A is given access to a LR-encryption oracle Ek(LR(.,.,b)) and an decryption oracle 
Dk(.), where k is locally output in sid. 

• At some point A plays a variant of an IND-CCA2 attack game 
• Where A submits same-length pairs to Ek(LR(.,.,b)), never queries Dk(.) on outputs by 

Ek(LR(.,.,b)) 
• A may still interact with uncompleted protocol sessions, but all sessions of the protocol do 

not accept ciphertexts output by Ek(LR(.,.,b)) when they reach a point in the protocol in 
which at least one session expects to receive a message encrypted under the key k. 

• At some point A  outputs a guess bit d, which is also the output of Expb 
A, ∑, ()  

• Define the advantage of adversary A by ADVke 
A, ∑, () = |Pr(Exp1 

A, ∑, () =1) - 
Pr(Exp0 

A, ∑, () =1)|. 
• Then key k is strongly usable (for IND-CCA2 encryption) for schemes in S if for all 

  S and all ppt  A,  ADVke 
A, ∑, ()  is negligible. 


