
Порождающие модели
распознавания изображений

Влад Шахуро

Факультет компьютерных наук ВШЭ

28 января 2016 г.

Kinect
Решающий лес
1 миллион синтетических изображений
Обучение — 1 день на 1000-ядерном кластере

Shotton et al. Real-Time Human Pose Recognition in Parts from
Single Depth Images. CVPR 2011 2

DeepFace
Глубокая сверточная нейронная сеть
4.4 миллиона обучающих изображений
4030 людей

Taigman et al. Deepface: Closing the gap to human-level
performance in face verification. CVPR 2014

3

Пример работы порождающего подхода
Observed

Image
Inferred

(reconstruction)
Inferred model

re-rendered with
novel poses

Inferred model
re-rendered with

novel lighting

Figure 3: Inference on representative faces using Picture: We
tested our approach on a held-out dataset of 2D image projections
of laser-scanned faces from [36]. Our short probabilistic program
is applicable to non-frontal faces and provides reasonable parses as
illustrated above using only general-purpose inference machinery.
For quantitative metrics, refer to section 4.1.

and informed samplers [19]. GPGP aimed to address the
main challenges of generative vision by representing visual
scenes as short probabilistic programs with random vari-
ables, and using a generic MCMC (single-site Metropolis-
Hastings) method for inference. However, due to modeling
limitations of earlier probabilistic programming languages,
and the inefficiency of the Metropolis-Hastings sampler,
GPGP was limited to working with low-dimensional scenes,
restricted shapes, and low levels of appearance variability.
Moreover, it did not support the integration of bottom-up
discriminative models such as deep neural networks [23, 25]
for data-driven proposal learning. Our current work extends
the GPGP framework in all of these directions, letting us
tackle a richer set of real-world 3D vision problems.

Picture is an imperative programming language, where
expressions can take on either deterministic or stochastic val-
ues. We use the transformational compilation technique [46]
to implement Picture, which is a general method of trans-
forming arbitrary programming languages into probabilistic
programming languages. Compared to earlier formulations
of GPGP, Picture is dynamically compiled at run-time (JIT-
compilation) instead of interpreting, making program execu-
tion much faster.

A Picture program f defines a stochastic procedure that
generates both a scene description and all other information
needed to render an approximation image IR for compari-
son with an observed image ID. The program f induces a
joint probability distribution on the program trace ρ = {ρi},
the set of all random choices i needed to specify the scene
hypothesis S and render IR. Each random choice ρi can
belong to a familiar parametric or non-parametric family of
distributions, such as Multinomial, MvNormal, DiscreteU-
niform, Poisson, or Gaussian Process, but in being used to
specify the trace of a probabilistic graphics program, their

effects can be combined much more richly than is typical for
random variables in traditional statistical models.

Consider running the program in Figure 2 unconditionally
(without observed data): as different ρi’s are encountered
(for e.g. coeff), random values are sampled w.r.t their under-
lying probability distribution and cached in the current state
of the inference engine. Program execution outputs an image
of a face with random shape, texture, camera and lighting
parameters. Given image data ID, inference in Picture pro-
grams amounts to iteratively sampling or evolving program
trace ρ to a high probability state while respecting constraints
imposed by the data (Figure 3). This constrained simulation
can be achieved by using the observe language construct
(see code in Figure 2), first proposed in Venture [32] and
also used in [35, 47].

2.1. Architecture

In this section, we will explain the essential architectural
components highlighted in Figure 1 (see Figure 4 for a sum-
mary of notation used).
Scene Language: The scene language is used to describe
2D/3D visual scenes as probabilistic code. Visual scenes
can be built out of several graphics primitives such as: de-
scription of 3D objects in the scene (e.g. mesh, z-map,
volumetric), one or more lights, textures, and the camera
information. It is important to note that scenes expressed
as probabilistic code are more general than parametric prior
density functions as is typical in generative vision models.
The probabilistic programs we demonstrate in this paper
embed ideas from computer-aided design (CAD) and non-
parametric Bayesian statistics[37] to express variability in
3D shapes.
Approximate Renderer (AR): Picture’s AR layer takes in
a scene representation trace Sρ and tolerance variables Xρ,
and uses general-purpose graphics simulators (Blender[5]
and OpenGL) to render 3D scenes. The rendering tolerance
Xρ defines a structured noise process over the rendering and
is useful for the following purposes: (a) to make automatic
inference more tractable or robust, analogous to simulated
annealing (e.g. global or local blur variables in GPGP [31]),
and (b) to soak up model mismatch between the true scene
rendering ID and the hypothesized rendering IR. Inspired by
the differentiable renderer[29], Picture also supports express-
ing AR’s entire graphics pipeline as Picture code, enabling
the language to express end-to-end differentiable generative
models.
Representation Layer (RL): To avoid the need for photo-
realistic rendering of complex scenes, which can be slow
and modeling-intensive, or for pixel-wise comparison of
hypothesized scenes and observed images, which can some-
times yield posteriors that are intractable for sampling-based
inference, the RL supports comparison of generated and ob-
served images in terms of a hierarchy of abstract features.

4

Общая схема порождающего подхода
Scene

Language

Approximate
Renderer

Representation Layer
Scene

ID

⌫(.)
IR

e.g. Deep Neural Net,
Contours, Skeletons, Pixels

⌫(ID)⌫(IR)

(a)

S⇢

�(⌫(ID), ⌫(IR))

Likelihood or Likelihood-free
Comparator

or
P (ID|IR, X)

Rendering
Tolerance

X⇢

Observed
Image

(b)

Given
current

Inference Engine
Automatically

produces
MCMC, HMC,
Elliptical Slice,

Data-driven
proposals

.

.

.

qP ((S⇢, X⇢) ! (S0⇢, X 0⇢))

qhmc(S
⇢
real ! S0⇢

real)

qslice(S
⇢
real ! S0⇢

real)

qdata((S⇢, X⇢) ! (S0⇢, X 0⇢))

New
(S⇢, X⇢) (S0⇢, X 0⇢)

ID

and
image

3D Face
program

3D object
program

Random
samples

drawn from
example

probabilistic
programs

IR

(c)

3D human-pose
program

Figure 1: Overview: (a) All models share a common template;
only the scene description S and image ID changes across prob-
lems. Every probabilistic graphics program f defines a stochas-
tic procedure that generates both a scene description and all the
other information needed to render an approximation IR of a given
observed image ID . The program f induces a joint probability
distribution on these program traces ρ. Every Picture program has
the following components. Scene Language: Describes 2D/3D
scenes and generates particular scene related trace variables Sρ ∈ ρ
during execution. Approximate Renderer: Produces graphics ren-
dering IR given Sρ and latents Xρ for controlling the fidelity or
tolerance of rendering. Representation Layer: Transforms ID or
IR into a hierarchy of coarse-to-fine image representations ν(ID)
and ν(IR) (deep neural networks [25, 23], contours [8] and pixels).
Comparator: During inference, IR and ID can be compared using
a likelihood function or a distance metric λ (as in Approximate
Bayesian Computation [44]). (b) Inference Engine: Automati-
cally produces a variety of proposals and iteratively evolves the
scene hypothesis S to reach a high probability state given ID . (c):
Representative random scenes drawn from probabilistic graphics
programs for faces, objects, and bodies.

proposals, which can dramatically accelerate inference by
eliminating most of the “burn in” time of traditional samplers
and enabling rapid mode-switching.

We demonstrate Picture on three challenging vision prob-
lems: inferring the 3D shape and detailed appearance of
faces, the 3D pose of articulated human bodies, and the 3D
shape of medially-symmetric objects. The vast majority of
code for image modeling and inference is reusable across

function PROGRAM(MU, PC, EV, VERTEX_ORDER)
Scene Language: Stochastic Scene Gen
face=Dict();shape = []; texture = [];
for S in ["shape", "texture"]
for p in ["nose", "eyes", "outline", "lips"]
coeff = MvNormal(0,1,1,99)
face[S][p] = MU[S][p]+PC[S][p].*(coeff.*EV[S][p])
end
end
shape=face["shape"][:]; tex=face["texture"][:];
camera = Uniform(-1,1,1,2); light = Uniform(-1,1,1,2)

Approximate Renderer
rendered_img= MeshRenderer(shape,tex,light,camera)

Representation Layer
ren_ftrs = getFeatures("CNN_Conv6", rendered_img)

Comparator
#Using Pixel as Summary Statistics
observe(MvNormal(0,0.01), rendered_img-obs_img)
#Using CNN last conv layer as Summary Statistics
observe(MvNormal(0,10), ren_ftrs-obs_cnn)

end

global obs_img = imread("test.png")
global obs_cnn = getFeatures("CNN_Conv6", img)
#Load args from file
TR = trace(PROGRAM,args=[MU,PC,EV,VERTEX_ORDER])
Data-Driven Learning
learn_datadriven_proposals(TR,100000,"CNN_Conv6")
load_proposals(TR)
Inference
infer(TR,CB,20,["DATA-DRIVEN"])
infer(TR,CB,200,["ELLIPTICAL"])

Figure 2: Picture code illustration for 3D face analysis: Modules
from Figure 1a,b are highlighted in bold. Running the program
unconditionally (by removing observe’s in code) produces random
faces as shown in Figure 1c. Running the program conditionally
(keeping observe’s) on ID results in posterior inference as shown
in Figure 3. The variables MU, PC, EV correspond to the mean
shape/texture face, principal components, and eigenvectors respec-
tively (see [36] for details). These arguments parametrize the prior
on the learned shape and appearance of 3D faces. The argument
VERTEX ORDER denotes the ordered list of vertices to render
triangle based meshes. The observe directive constrains the pro-
gram execution based on both the pixel data and CNN features.
The infer directive starts the inference engine with the specified set
of inference schemes (takes the program trace, a callback function
CB for debugging, number of iterations and inference schemes). In
this example, data-driven proposals are run for a few iterations to
initialize the sampler, followed by slice sampling moves to further
refine the high dimensional scene latents.

these and many other tasks. We shows that Picture yields
performance competitive with optimized baselines on each
of these benchmark tasks.

2. Picture Language
Picture descends from our earlier work on generative

probabilistic graphics programming (GPGP) [31], and also
incorporates insights for inference from the Helmholtz ma-
chine [17, 6] and recent work on differentiable renderers [29]

Kulkarni et al. Picture: a probabilistic programming language for
scene perception. CVPR 2015 5

Как описывать сцены?

n ∼ Poisson(1) — количество квадратов
Для i = 1, . . . ,n
xi ∼ Uniform({0, . . . ,W}) — x-координата
yi ∼ Uniform({0, . . . ,H}) — y-координата
si ∼ Uniform({0, . . . ,S}) — длина стороны
roti ∼ Uniform(0, 90) — поворот в градусах
coli ∼ Uniform([0, 1], [0, 1], [0, 1]) — цвет

render(xi,yi, roti, coli)
6

Как рендерить сцены?
OpenDR — движок рендеринга, в котором
изображение можно продифференцировать по
параметрам сцены

Loper et al. Opendr: An approximate differentiable renderer. ECCV
2014 7

Как генерировать гипотезы?
Схема Метрополиса-Гастингса

Дано p(x),q(x|x ′)
Задать x0

Для i = 1 . . .n
x∗ ∼ q(x|xi−1)

γ = min
(
1, p(x∗)q(xi−1|x∗)
p(xi−1)q(x∗|xi−1)

)

xi = (rand(0, 1) < γ) ? x∗ : xi−1

8

Как генерировать гипотезы?Metropolis–Hastings

θ′ ∼ q(θ′; θ(s))

if accept:

θ(s+1)← θ′

else:

θ(s+1)← θ(s)

P (accept) = min

(
1,

π∗(θ′) q(θ(s); θ′)

π∗(θ(s)) q(θ′; θ(s))

)

Hamiltonian Monte Carlo для случайных величин
с дифференцируемой плотностью
Informed Sampler для использования
дискриминативных методов

9

Как генерировать гипотезы?Metropolis–Hastings

θ′ ∼ q(θ′; θ(s))

if accept:

θ(s+1)← θ′

else:

θ(s+1)← θ(s)

P (accept) = min

(
1,

π∗(θ′) q(θ(s); θ′)

π∗(θ(s)) q(θ′; θ(s))

)
Hamiltonian Monte Carlo для случайных величин
с дифференцируемой плотностью

Informed Sampler для использования
дискриминативных методов

9

Как генерировать гипотезы?Metropolis–Hastings

θ′ ∼ q(θ′; θ(s))

if accept:

θ(s+1)← θ′

else:

θ(s+1)← θ(s)

P (accept) = min

(
1,

π∗(θ′) q(θ(s); θ′)

π∗(θ(s)) q(θ′; θ(s))

)
Hamiltonian Monte Carlo для случайных величин
с дифференцируемой плотностью
Informed Sampler для использования
дискриминативных методов 9

Пример работы порождающего подхода(a) Head Arm1 Arm2 Fot1 Fot2
0

20

40

60

80

100

E
R

R
O

R

Baseline

Our Method

(b)

Figure 6: Quantitative and qualitative results for 3D human
pose program: Refer to supplementary Figure 4 for the proba-
bilistic program. We quantitatively evaluate the pose program on
a dataset collected from various sources such as KTH [39], La-
belMe [38] images with significant occlusion in the “person sitting”
category and the Internet. On the given dataset, as shown in the
error histogram in (a), our model is more accurate on average than
just using the DPM based human pose detector [48]. The histogram
shows average error for all methods considered over the entire
dataset separated over each body part.

model to get right – mainly due to “missing” observation
signal – while our model-based approach can handle these
reasonably if we constrain the knee parameters to bend only
in natural ways in the prior. Most of our model’s failure
cases, as shown in Figure 6b, are in inferring the arm posi-
tion; this is typically due to noisy and low quality feature
maps around the arm area due to its small size.

In order to quantitatively compare results, we project the
3D pose obtained from our model to 2D key-points. As
shown in Figure 6a, our system localizes these key-points
significantly better than DPM-pose on this dataset. However,
DPM-pose is a much faster bottom-up method, and we ex-
plored ways to combine its strengths with our model-based
approach, by using it as the basis for learning data-driven
proposals. We generated around 500k program traces by
unconditionally running the body pose program. We used a
pre-trained DPM pose model [48] as the function νdd, and
used a similar density function Pdensity as in the face ex-
ample. As shown in Figure 7, inference using a mixture
kernel of data-driven proposals (0.1 probability) and single-
site MH (0.9 probability) consistently outperformed pure

With Data-driven Proposals
Without Data-driven Proposals

Figure 7: Illustration of data-driven proposal learning for 3D
human-pose program: (a) Random program traces sampled from
the prior during training. The colored stick figures are the results
of applying DPM pose model on the hallucinated data from the
program. (b) Representative test image. (c) Visualization of the
representation layer ν(ID). (d) Result after inference. (e) Samples
drawn from the learned bottom-up proposals conditioned on the
test image are semantically close to the test image and results are
fine-tuned by top-down inference to close the gap. As shown on the
log-l plot, we run about 100 independent chains with and without
the learned proposal. Inference with a mixture kernel of learned
bottom-up proposals and single-site MH consistently outperforms
baseline in terms of both speed and accuracy.

top-down MH inference in both speed and accuracy. We see
this as representative of many ways that top-down inference
in model-based approaches could be profitably combined
with fast bottom-up methods like DPM-pose to solve richer
scene parsing problems more quickly.

4.3. 3D Shape Program

Lathing and casting is a useful representation to ex-
press CAD models and inspires our approach to modeling
medially-symmetric 3D objects. It is straightforward to
generate random CAD object models using a probabilistic
program, as shown in supplementary Figure 3. However,
the distribution induced by such a program may be quite
complex. Given object boundaries in B ∈ R2 space, we can
lathe an object by taking a cross section of points (fixed for
this program), defining a medial axis for the cross section
and sweeping the cross section across the medial axis by
continuously perturbing with respect to B. Capturing the
full range of 3D shape variability in real objects will require
a very large space of possible boundaries B. To this end,
Picture allows flexible non-parametric priors over object pro-
files: here we generate B from a Gaussian Process [37] (GP).
The probabilistic shape program produces an intermediate
mesh of all or part of the 3D object (soft-constrained to be in
the middle of the scene), which then gets rendered to an im-
age IR by a deterministic camera re-projection function. The

10

Резюме

Порождающий подход интересен в задачах, где
много свободных параметров и
дискриминативным методам требуется большие
обучающие выборки.

Проблемы подхода:
I для решения задач нужны качественные

трехмерные модели
I медленная сходимость вероятностного

вывода, и, как следствие, медленная работа
алгоритма распознавания.

11

