

## Алгоритмы решения задачи о максимальной клике

аспирант второго года обучения, стажер-исследователь Лаборатории Алгоритмов и Технологий Анализа Сетевых структур,

старший преподаватель кафедры Прикладной математики и информатики Факультета информатики, математики и компьютерных наук

Николаев А. И.



### Публикации

#### 2016

- Николаев А. И. Эффективный подход на основе машинного обучения для решения **задачи о максимальной клике** // Информационные технологии, Т. 22, № 4, 2016, С. 249-254.
- San Segundo P., Nikolaev A., Batsyn M., Pardalos P.M. Improved Infra-Chromatic Bound for Exact Maximum Clique Search // Informatica. 2016. Vol. 27. No. 2. P. 463-487.
- San Segundo P., Lopez A., Batsyn M. V., Nikolaev A. I., Pardalos P. M. Improved initial vertex ordering for exact maximum clique search // Applied Intelligence.
   2016. Vol. 45. No. 3. P. 868-880.

#### 2015

- San Segundo P., Nikolaev A., Batsyn M. Infra-chromatic bound for exact maximum clique search // Computers & Operations Research. 2015. Vol. 64. P. 293-303.
- Nikolaev A., Batsyn M., San Segundo P. Reusing the Same Coloring in the Child Nodes of the Search Tree for the **Maximum Clique Problem** // Lecture Notes in Computer Science. 2015. Vol. 8994. P. 275-280.



#### Определения

- Будем рассматривать простые (без петель и кратных ребер) неориентированные графы
   G = (V, E).
- *Кликой Q* (или *полным подграфом*) графа *G* называется такое подмножество его вершин, в котором любые две вершины соединены ребром.
- Клика, которая не содержится в клике большего размера, называется *максимальной по включению* (*maximal clique*).



### Определения

• Задача о Максимальной Клике (МСР) состоит в том, чтобы для заданного графа *G* найти клику максимального размера (*maximum clique*).





## Edge formulation

$$\max \sum_{i=1}^{n} x_i$$

$$x_i + x_j \le 1, \forall (i, j) \in \overline{E}$$
  
 $x_i \in \{0, 1\}, i = 1, ..., n$ 

$$\bar{E} = \{(i,j)|i,j \in \{1,...,n\}, i \neq j$$
 и  $(i,j) \notin E\}$ 



## «Трудность» NP-трудной задачи

| Туре             | Name                             | I <b>V</b> I | <b>E</b>  | d <sub>max</sub> | d <sub>avg</sub> | <i>K</i> ( <i>G</i> ) + 1 |   | BBMCSP<br>Φ <sub>o</sub> | BBMCSP<br>heur | BBMCSP<br>search |
|------------------|----------------------------------|--------------|-----------|------------------|------------------|---------------------------|---|--------------------------|----------------|------------------|
| Affiliation      | aff-orkut-<br>user2groups        | 8730857      | 327037420 | 318268           | 74.92            | 472                       | 6 | 5                        | 852            | 1377             |
| Infrastructure   | inf-germany_osm                  | 11548845     | 12369181  | 13               | 2.14             | 4                         | 3 | 3                        | < 0.001        | < 0.001          |
| Infrastructure   | inf-great-<br>britain_osm        | 7733822      | 8156517   | 8                | 2.11             | 4                         | 3 | 3                        | < 0.001        | < 0.001          |
| Infrastructure   | inf-italy_osm                    | 6686493      | 7013978   | 9                | 2.10             | 4                         | 3 | 3                        | < 0.001        | < 0.001          |
| Scientific comp. | adaptive                         | 6815744      | 13624320  | 4                | 4.00             | 3                         | 2 | 2                        | 1.35           | 1.15             |
| Scientific comp. | channel-<br>500x100x100-<br>b050 | 4802000      | 42681372  | 18               | 17.78            | 10                        | 4 | 4                        | 4.47           | 5.22             |
| Scientific comp. | delaunay_n22                     | 4194304      | 12582869  | 23               | 6.00             | 5                         | 4 | 4                        | 2.14           | 1.58             |
| Scientific comp. | delaunay_n23                     | 8388608      | 25165784  | 28               | 6.00             | 5                         | 4 | 4                        | 4.46           | 3.29             |
| Scientific comp. | delaunay_n24                     | 16777216     | 50331601  | 26               | 6.00             | 5                         | 4 | 4                        | 8.96           | 6.84             |
| Scientific comp. | hugebubbles-<br>00020            | 21198119     | 31790179  | 3                | 3.00             | 3                         | 2 | 2                        | 6.42           | 3.62             |

San Segundo P., Lopez A., Pardalos P. M. A new exact maximum clique algorithm for large and massive sparse graphs //Computers & Operations Research. – 2016. – T. 66. – C. 81-94.



## «Трудность» NP-трудной задачи

|            |                   | -         |            |         |       |      |      |      |       |       |
|------------|-------------------|-----------|------------|---------|-------|------|------|------|-------|-------|
| Social     | soc-friendster    | 65608366  | 1806067135 | 5214    | 55.06 | 305  | 129  | 119  | 692   | 1027  |
| Social     | soc-livejournal07 | 5204176   | 48709773   | 15017   | 18.72 | 375  | 358  | 356  | 0.052 | 0.007 |
| Social     | soc-livejournal-  | 7489073   | 112307315  | 1053749 | 29.99 | 117  | 9    | 8    | 771   | 718   |
|            | user-groups       |           |            |         |       |      |      |      |       |       |
| Social     | soc-ljournal-2008 | 5363260   | 49514271   | 19432   | 18.46 | 426  | 400  | 400  | 0.033 | 0.001 |
| Social     | soc-orkut-dir     | 3072441   | 117185083  | 33313   | 76.28 | 254  | 51   | 50   | 38.7  | 55.8  |
| Social     | soc-sinaweibo     | 58655849  | 261321033  | 278489  | 8.91  | 194  | 44   | 41   | 662   | 94.8  |
| Social     | socfb-A-anon      | 3097165   | 23667394   | 4915    | 15.28 | 75   | 25   | 24   | 7.18  | 9.01  |
| (facebook) |                   |           |            |         |       |      |      |      |       |       |
| Social     | socfb-konect.     | 46009640  | 72040814   | 4960    | 3.13  | 16   | 6    | 6    | 4.77  | 0.638 |
| (facebook) | edges             |           |            |         |       |      |      |      |       |       |
| Social     | socfb-uci-un      | 58790782  | 92208195   | 4960    | 3.14  | 17   | 6    | 6    | 8.95  | 0.916 |
| (facebook) |                   |           |            |         |       |      |      |      |       |       |
| Web links  | web-ClueWeb09-    | 428136612 | 446534058  | 308477  | 2.09  | 193  | 56   | 53   | 267   | 4.77  |
|            | 50 m              |           |            |         |       |      |      |      |       |       |
| Web links  | web-indochina-    | 7414866   | 150984819  | 256425  | 40.72 | 6870 | 6848 | 6848 | 14.7  | 0.282 |
|            | 2004-all          |           |            |         |       |      |      |      |       |       |
| Web links  | web-it-2004-all   | 41291318  | 1027474947 | 1326744 | 49.77 | 3225 | 3222 | 3222 | 3.59  | 0.195 |
| Web links  | web-              | 3930109   | 68714064   | 437732  | 34.97 | 461  | 339  | 339  | 14.4  | 0.007 |
|            | wikipedia_link_de |           |            |         |       |      |      |      |       |       |
| Web links  | web-              | 5115915   | 104591689  | 1274642 | 40.89 | 818  | 332  | 332  | 253   | 0.115 |
|            | wikipedia_link_fr |           |            |         |       |      |      |      |       |       |
|            |                   |           |            | J       |       |      |      |      |       |       |



### Точные алгоритмы для решения МСР

1957 - Harary and Ross

1973 - Bron and Kerbosch



1977 – Tarjan and Trojanowski

1990 - Carraghan and Pardalos

1986, 2001 - Robson

2002 - P. R. J. Ostergard

. . .



## Эффективные точные алгоритмы для решения МСР

- 2010 MaxCLQ (Li and Quan)
- 2010 MCS (Tomita et al.)
- 2011 BBMCI (Segundo et al.)
- 2013 IncMaxCLQ (Li et al.)
- 2015 BBMCX (Segundo et al.)
- 2015 RPC (Nikolaev et al.)
- 2016 BBMCSP (Segundo et al.) (for
- large and massive sparse graphs)



## Эффективные точные алгоритмы для решения МСР

Ограничение по времени: 24 часа

| name       | n    | d     | $\omega$ | Cliquer | Regin | MCR    | MCQdyn | MaxCLQ <sup>-</sup> | MaxCLQ | 8    | Rate |
|------------|------|-------|----------|---------|-------|--------|--------|---------------------|--------|------|------|
| brock200_1 | 200  | 0.74  | 21       | 6.37    | 4.60  | 1.13   | 0.96   | 2.28                | 0.67   | 2.66 | 0.86 |
| brock400_1 | 400  | 0.75  | 27       | 22182   | 4867  | 1137   | 703.5  | 1447                | 370.84 | 2.92 | 0.86 |
| brock400_2 | 400  | 0.75  | 29       | 5617    | 3395  | 465.10 | 309.0  | 664.9               | 178.70 | 2.86 | 0.86 |
| brock400_3 | 400  | 0.75  | 31       | 1667    | 1922  | 766.51 | 565.0  | 971.3               | 290.06 | 2.81 | 0.85 |
| brock400_4 | 400  | 0.75  | 33       | 247.7   | 2597  | 409.43 | 320.4  | 605.6               | 167.30 | 3.15 | 0.85 |
| brock800_1 | 800  | 0.65  | 23       | _       | -     | 10712  | 8821   | 22821               | 8815   | 2.92 | 0.80 |
| brock800_2 | 800  | 0.65  | 24       | _       | _     | 9679   | 8125   | 21001               | 7690   | 2.77 | 0.81 |
| brock800_3 | 800  | 0.65  | 25       | 26014   | -     | 6546   | 5565   | 13559               | 5285   | 2.73 | 0.80 |
| brock800_4 | 800  | 0.65  | 26       | 6108    | -     | 4561   | 4240   | 9625                | 3880   | 2.71 | 0.80 |
| MANN_a27   | 378  | 0.99  | 126      | _       | 7.93  | 1.98   | 3.10   | 6.86                | 0.66   | 3.21 | 0.75 |
| MANN_a45   | 1035 | 0.996 | 345      | _       | -     | 2931   | 2006   | 8965                | 255.67 | 6.30 | 0.91 |

Chu Min Li and Zhe Quan.: An efficient branch-and-bound algorithm based on maxsat for the maximum clique problem. In: Proc. of the 24th AAAI, pages 128–133, 2010.



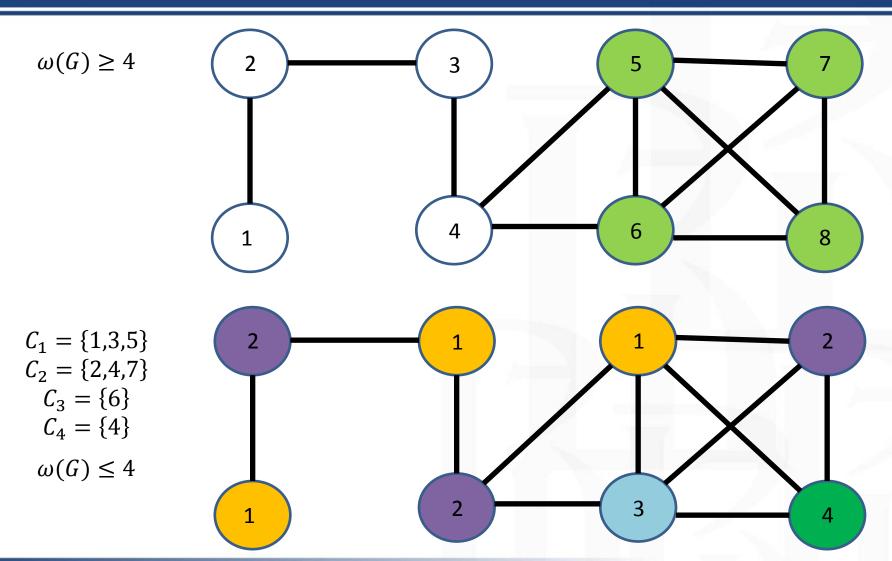
## Почему разрабатываются новые точные алгоритмы для МСР?

- Chu Min Li et al.
- Pablo San Segundo et al.
- Etsuji Tomita et al.
- Mikhail Batsyn, Panos M. Pardalos et al.
- Patrick Prosser & Ciaran McCreesh



## Почему разрабатываются новые точные алгоритмы для МСР?

### Chu Min Li published new research ResearchGate [no-reply@researchgatemail.net] Действия → Кому: Николаев Алексей Игоревич 28 февраля 2017 г. 10:00 - Для защиты конфиденциальности некоторое содержимое в данном сообщении заблокировано. При уверенности, что это сообщение пришло от надежного отправителя и при желании включить заблокированные функции, щелкните здесь. Chu Min Li published this article: Article · February 2017 On Minimization of the Number of Branches in Branch-and-Bound Algorithms for the Maximum C...


Высшая школа экономики, Москва, 2017

Computers & Operations Research

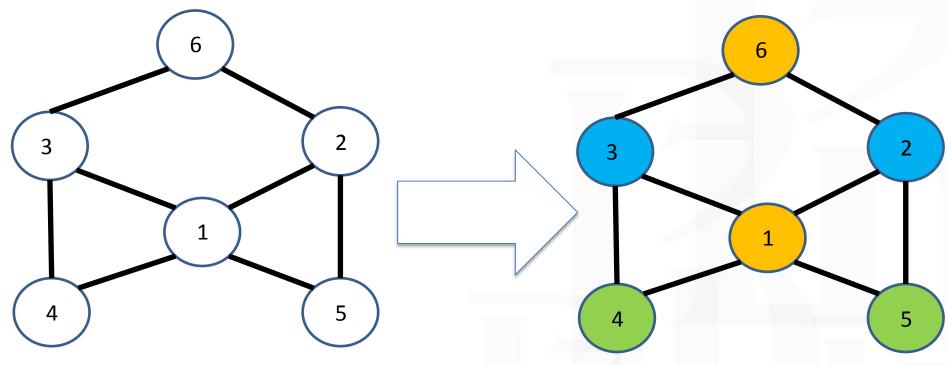
#### Определения

- Вершинной раскраской графа G = (V, E) называется такое отображение  $c: V \to \mathbb{N}$ , что  $c(v) \neq c(w)$  для любых двух смежных вершин v, w.
- Утверждение. Если граф G = (V, E) может быть раскрашен в k цветов, то  $\omega(G) \le k$ , причем в максимальную клику входит не более одной вершины из каждого цвета.

## Пример





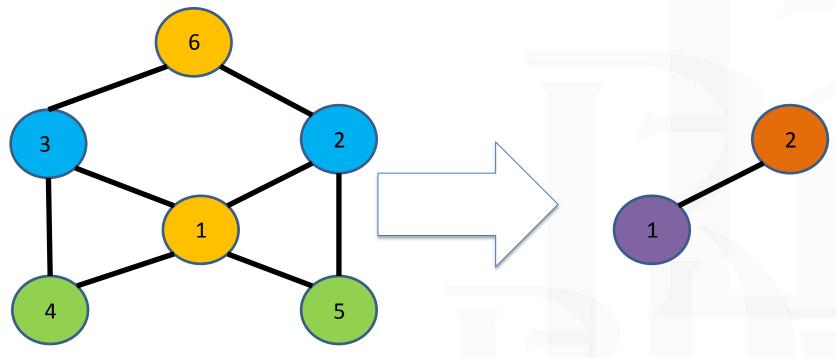

### Алгоритм MCS

- Алгоритм MCS реализует метод ветвей и границ.
- В начале работы алгоритма происходит перенумерация вершин и запускается эвристика для нахождения начального решения.
- В первую очередь алгоритм ветвиться по вершинам, покрашенным в наибольший цвет.
- Для нахождения верхней границы используется жадный алгоритм раскраски с перекраской (процедура Re-NUMBER).

Tomita E., Sutani Y., Higashi T., Takahashi S., Wakatsuki M. *A Simple and Faster Branch-and-Bound Algorithm for Finding a Maximum Clique*. Lecture Notes in Computer Science, 5942, 2010, 191-203



## Пример работы MCS (без нахождения начального решения)

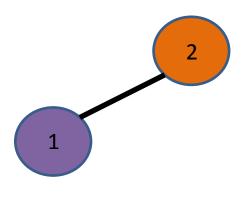


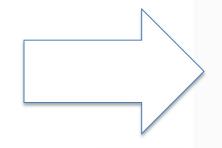

Q — текущая клика  $Q_{max}$  — найденная максимальная клика U — список вершин кандидатов

$$Q = \emptyset, Q_{max} = \emptyset$$
  
 $U = \{1,2,3,4,5,6\}$   
 $C = \{\{1,6\}, \{2,3\}, \{4,5\}\}$ 



## Пример работы MCS





$$Q = \emptyset, Q_{max} = \emptyset$$
  
 $U = \{1,2,3,4,5,6\}$   
 $C = \{\{1,6\}, \{2,3\}, \{4,5\}\}$ 

$$Q = \{5\}, Q_{max} = \emptyset$$
  
 $U = \{1,2\}$   
 $C = \{\{1\}, \{2\}\}$ 



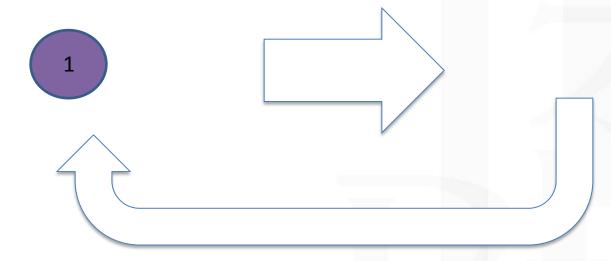
## Пример работы MCS







$$Q = \{5\}, Q_{max} = \emptyset$$
  
 $U = \{1,2\}$   
 $C = \{\{1\}, \{2\}\}$ 

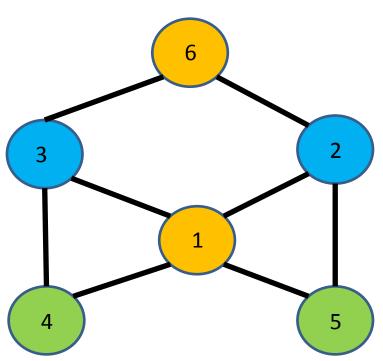

$$Q = \{5,2\}, Q_{max} = \emptyset$$
  
 $U = \{1\}$   
 $C = \{\{1\}\}$ 



## Пример работы MCS

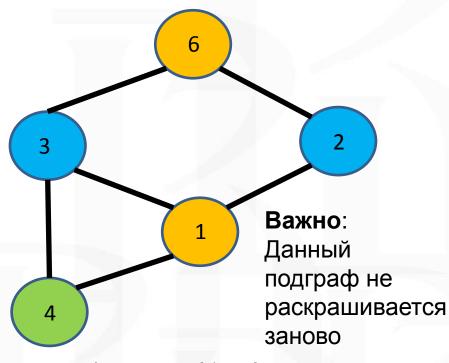
$$Q = \{5,2\}, Q_{max} = \emptyset$$
  
 $U = \{1\}$   
 $C = \{\{1\}\}$ 

$$\begin{split} Q &= \{5,2,1\}, Q_{max} = \emptyset \\ U &= \emptyset \\ |Q| > |Q_{max}| &\Rightarrow Q_{max} = \{5,2,1\} \end{split}$$




Удалить вершину 1 из U




#### После нескольких пропущенных шагов





$$Q = \emptyset, Q_{max} = \emptyset$$
  
 $U = \{1,2,3,4,5,6\}$   
 $C = \{\{1,6\}, \{2,3\}, \{4,5\}\}$ 

#### Стало:



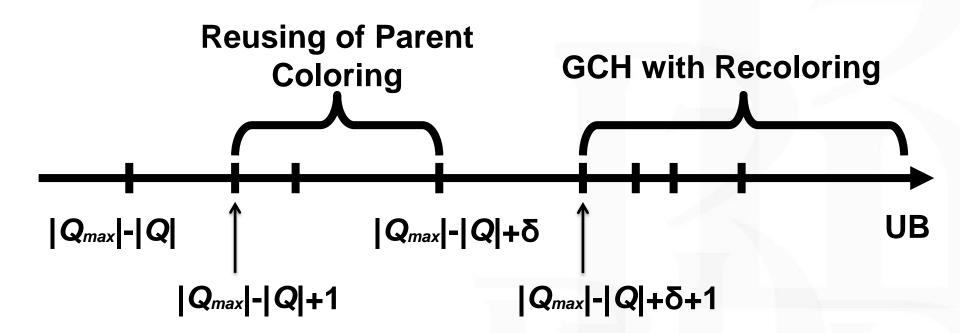
$$Q = \emptyset, Q_{max} = \{5,2,1\}$$
  
 $U = \{1,2,3,4,6\}$   
 $C = \{\{1,6\}, \{2,3\}, \{4\}\}$ 

Т.к.  $|Q| + |C| \le |Q_{max}|$ , то алгоритм останавливается

## Жадный алгоритм раскраски с перекраской

Сложность алгоритма жадной раскраски с перекраской:  $0(n^3)$ 

Tomita E., Sutani Y., Higashi T., Takahashi S., Wakatsuki M. *A Simple and Faster Branch-and-Bound Algorithm for Finding a Maximum Clique*. Lecture Notes in Computer Science, 5942, 2010, 191-203




### Алгоритм RPC

- Алгоритм RPC параметрический алгоритм с целым неотрицательным параметром  $\delta$ .
- Основная идея алгоритма RPC заключается в повторном использовании «родительской» раскраски для некоторых подзадач в дереве поиска вместо трудоемкого вычисления жадной раскраски с перекрашиванием для каждой подзадачи.
- При  $\delta = 0$  алгоритм RPC совпадает с алгоритмом MCS.

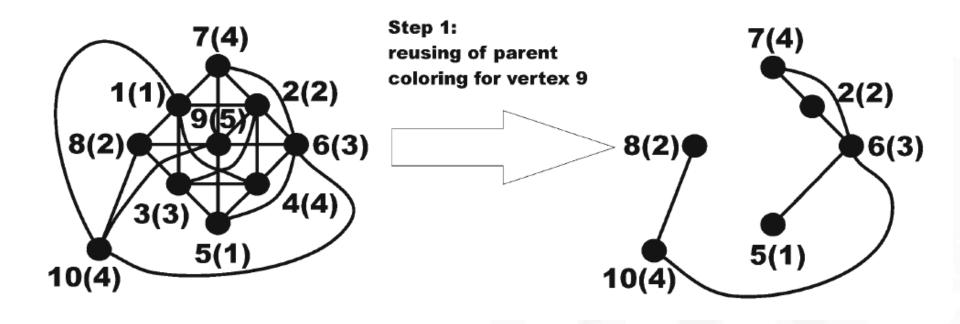
Nikolaev A., Batsyn M., San Segundo P. *Reusing the same coloring in the child nodes of the search tree for the maximum clique problem*. Lecture Notes in Computer Science, 8994, 2015, 275-280

### Алгоритм RPC





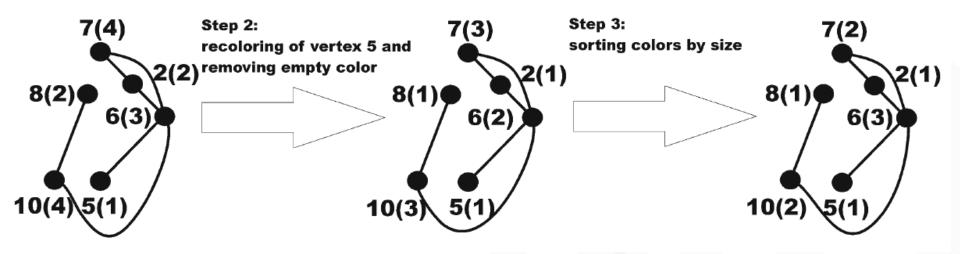
### Процедура Reusing of Parent Coloring


- 1. Повторное использовании родительской раскраски
- 2. Перекрашивание «вершин-цветов».
- 3. Сортировка и перенумерация цветов.

Сложность этой процедуры:  $0(n^2)$ 



#### Шаг 1


$$\delta = 2$$
,  $|Q| = 1$ ,  $|Q_{max}| = 4$ 





#### Шаг 2 и 3

$$\delta = 2$$
,  $|Q| = 2$ ,  $|Q_{max}| = 4$ 

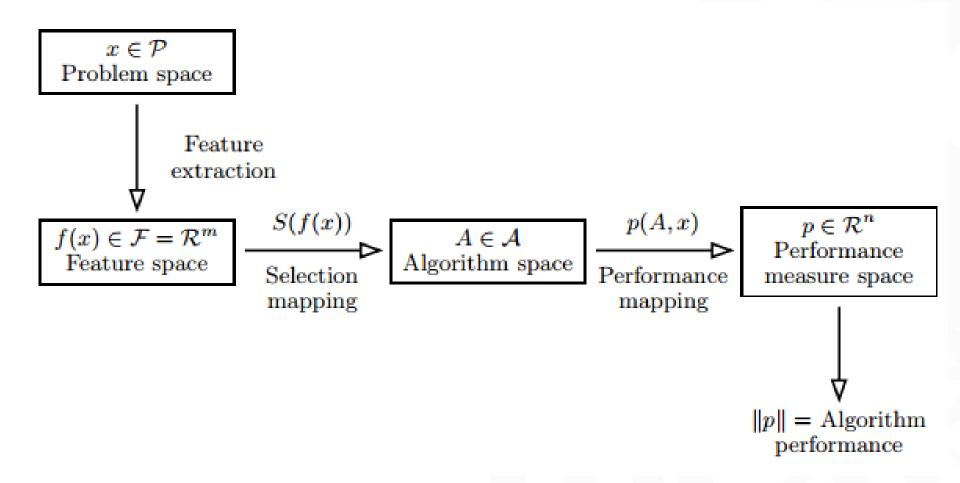




## Проблема

## Как выбрать $\delta$ ?




## Algorithm Selection Problem

• ASP состоит в том, что из заданного множества алгоритмов необходимо выбрать самый быстрый алгоритм для решения конкретной задачи.

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15, 65–118.



## Algorithm Selection Problem



Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15, 65–118.



# Selection mapping (Algorithm Selectors)

- Case-based reasoning k-NN,...
- Classification
   SVM, decision tree, random forest,...
- Regression
   linear regression, nonlinear regression,....

<sup>\*</sup> Kotthoff, L., Gent, I., Miguel, I.: A Preliminary Evaluation of Machine Learning in Algorithm Selection for Search Problems. In Borrajo, D., Likhachev, M., Lopez, C., eds.: Procs. SoCS'11, AAAI Press (2011) 84–91



### Признаки

| Номер    |                                                 |
|----------|-------------------------------------------------|
| признака | Описание признака                               |
| 1        | Число вершин                                    |
| 2        | Число ребер                                     |
| 3        | Плотность графа                                 |
| 4        | Минимальная степень вершин                      |
| 5        | Максимальная степень вершин                     |
| 6        | Среднее значение степени вершины                |
| 7        | Среднее квадратичное отклонение степени вершины |

Николаев А. И. Эффективный подход на основе машинного обучения для решения задачи о максимальной клике // Информационные технологии, Т. 22, № 4, 2016, С. 249-254.



## Признаки

| Номер    |                                                                        |
|----------|------------------------------------------------------------------------|
| признака | Описание признака                                                      |
| 8        | Минимальная сумма степеней смежных вершин                              |
| 9        | Максимальная сумма степеней смежных вершин                             |
| 10       | Среднее значение суммы степеней смежных вершин                         |
| 11       | Среднее квадратичное отклонение суммы степеней смежных вершин          |
| 12       | Размер клики, найденной жадной эвристикой (нижняя граница)             |
| 13       | Число цветов в жадной раскраске графа (верхняя граница)                |
|          | Число вершин, которые нужно рассмотреть на первом уровне дерева поиска |
| 14       | (ширина дерева поиска)                                                 |
|          | Доля вершин в графе, которые нужно рассмотреть на первом уровне дерева |
| 15       | поиска (относительная ширина дерева поиска)                            |



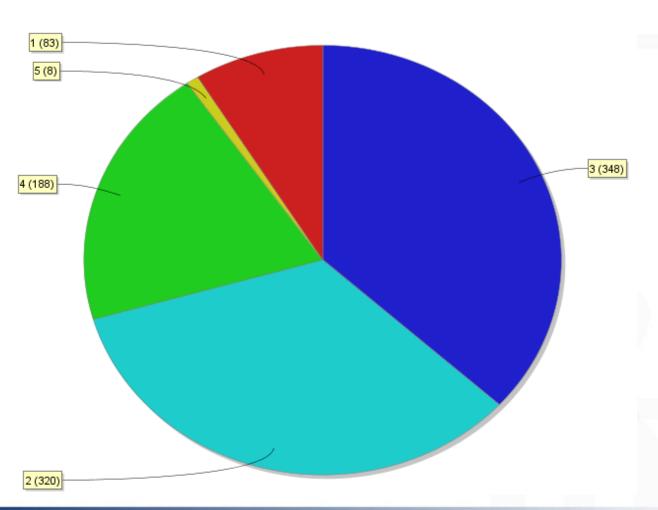
## Сгенерированная выборка для обучения (950 графов)

| n    | p         |
|------|-----------|
| 150  | 0.05-0.95 |
| 200  | 0.05-0.95 |
| 300  | 0.05-0.85 |
| 400  | 0.05-0.6  |
| 500  | 0.05-0.6  |
| 1000 | 0.05-0.4  |
| 1500 | 0.05-0.4  |



## Algorithm Selection Problem

#### Algorithm portfolio:


1. MaxCLQ

Li C.M., Quan Z. Combining graph structure exploitation and propositional reasoning for the maximum clique problem. Proceedings of the 2010 22nd IEEE International Conference on Tools with Artificial Intelligence, Volume 01 (ICTAI'10), 2010, 344-351

- 2. RPC,  $\delta=0$
- 3. RPC,  $\delta=1$
- 4. RPC,  $\delta=2$
- 5. RPC,  $\delta$ =3

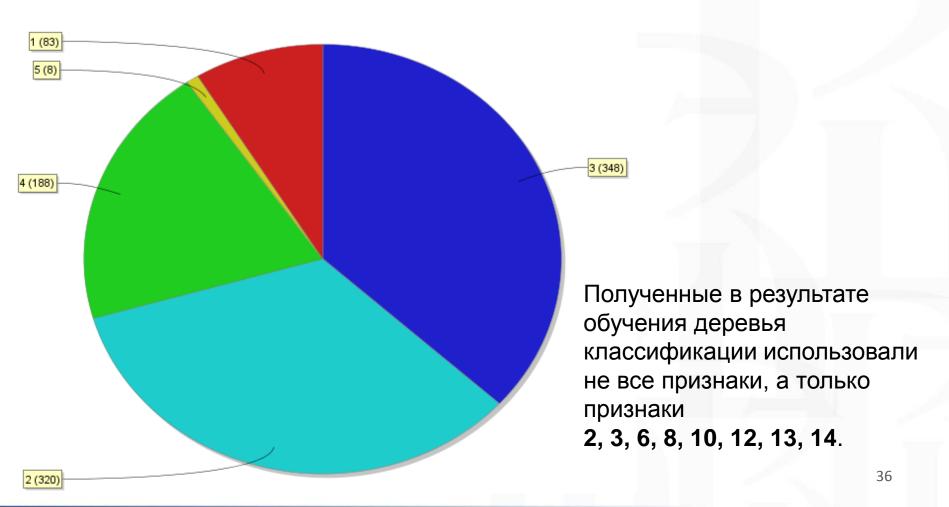


### Обучающая выборка (947 графов)



1 класс – MaxCLQ

2 класс – RPC,  $\delta$ =0


3 класс – RPC,  $\delta$ =1

4 класс — RPC,  $\delta$ =2

5 класс – RPC,  $\delta$ =3



#### Decision tree





# Вычислительные результаты (DIMACS)

#### **Confusion matrix**

|              | true 1  | true 3 | true 4  | true 5 | true 2 | class<br>precision |
|--------------|---------|--------|---------|--------|--------|--------------------|
| pred. 1      | 2       | 1      | 0       | 0      | 0      | 66.67%             |
| pred. 3      | 0       | 1      | 0       | 0      | 0      | 100.00%            |
| pred. 4      | 0       | 0      | 13      | 8      | 0      | 61.90%             |
| pred. 5      | 0       | 0      | 0       | 0      | 0      | 0.00%              |
| pred. 2      | 0       | 0      | 0       | 0      | 0      | 0.00%              |
| class recall | 100.00% | 50.00% | 100.00% | 0.00%  | 0.00%  |                    |

Точность предсказания на тестовой выборке - 64% (16 из 25). В случае неправильного предсказания выбирался второй по быстроте алгоритм.



frh30-15-5

# Вычислительные результаты (DIMACS)

|             |         |         | DDC          | DDC          | DDC          | Наиболее | □×           |
|-------------|---------|---------|--------------|--------------|--------------|----------|--------------|
|             |         |         | RPC,         | RPC,         | RPC,         | быстрый  | Предложенный |
| Граф DIMACS | MaxCLQ  | MCS     | $\delta = 1$ | $\delta = 2$ | $\delta = 3$ | алгоритм | подход       |
| C250.9      | 344516  | 1361335 | 1041168      | 987836       | 971229       | 344516   | 344517       |
| MANN_a45    | 34148   | 43230   | 31159        | 34574        | 85558        | 31159    | 34154        |
| brock400_1  | 259708  | 284586  | 244209       | 234715       | 235103       | 234715   | 234716       |
| brock400_2  | 118908  | 125398  | 107746       | 103844       | 103952       | 103844   | 103845       |
| brock400_3  | 204222  | 193386  | 164518       | 158995       | 159121       | 158995   | 158996       |
| brock400_4  | 130754  | 92893   | 79692        | 76856        | 77071        | 76856    | 76858        |
| brock800_1  | 5606592 | 3914626 | 3430660      | 3294158      | 3300223      | 3294158  | 3294165      |
| brock800_2  | 4889039 | 3395345 | 2971610      | 2845765      | 2842208      | 2842208  | 2845772      |
| brock800_3  | 3222601 | 3461488 | 3020965      | 2899545      | 2898460      | 2898460  | 2899552      |
| brock800_4  | 2438408 | 1602096 | 1405760      | 1341436      | 1333342      | 1333342  | 1341442      |
| dsjc500.5   | 3532    | 1555    | 1412         | 1426         | 1487         | 1412     | 1415         |
| dsjc1000.5  | 317877  | 140509  | 127070       | 123663       | 127732       | 123663   | 123675       |
| frb30-15-1  | 655244  | 721617  | 440375       | 339713       | 289979       | 289979   | 339715       |
| frb30-15-2  | 951654  | 533285  | 296789       | 208696       | 160926       | 160926   | 208698       |
| frb30-15-3  | 580959  | 473354  | 278528       | 210579       | 176525       | 176525   | 210581       |
| frb30-15-4  | 1155555 | 1327562 | 765939       | 574914       | 481628       | 481628   | 574915       |



# Вычислительные результаты (DIMACS)

|             |          |          |              |              |              | Наиболее |              |
|-------------|----------|----------|--------------|--------------|--------------|----------|--------------|
|             |          |          | RPC,         | RPC,         | RPC,         | быстрый  | Предложенный |
| Граф DIMACS | MaxCLQ   | MCS      | $\delta = 1$ | $\delta = 2$ | $\delta = 3$ | алгоритм | подход       |
| p_hat300-3  | 1387     | 1245     | 1051         | 1044         | 1089         | 1044     | 1045         |
| p_hat500-3  | 49829    | 60698    | 51642        | 49310        | 49779        | 49310    | 49313        |
| p_hat700-2  | 3586     | 2726     | 2319         | 2250         | 2371         | 2250     | 2255         |
| p_hat700-3  | 1082242  | 1063763  | 894519       | 841329       | 854369       | 841329   | 841333       |
| p_hat1000-2 | 117828   | 106392   | 87986        | 82428        | 83927        | 82428    | 82439        |
| p_hat1500-1 | 11408    | 2257     | 1993         | 1916         | 1922         | 1916     | 1936         |
| sanr200_0.9 | 5604     | 13855    | 10712        | 10107        | 10122        | 5604     | 5604         |
| sanr400_0.7 | 97663    | 79299    | 68261        | 66440        | 68368        | 66440    | 66442        |
| Общее время | 23156926 | 19491609 | 15792583     | 14678981     | 14464450     | 13750666 | 14030826     |



# Вычислительные результаты (DIMACS)

# Среднее сокращение времени вычислений предложенного подхода относительно каждого из рассматриваемых алгоритмов в отдельности для графов библиотеки DIMACS

| MaxCLQ | MCS    | RPC, $\delta=1$ | RPC, $\delta=2$ | RPC, $\delta=3$ | Наиболее<br>быстрый<br>алгоритм | Предложен<br>ный<br>подход |
|--------|--------|-----------------|-----------------|-----------------|---------------------------------|----------------------------|
| 35,74% | 28,97% | 11,83%          | 4,41%           | 3,21%           | -4,97%                          | 0,00%                      |



# Вычислительные результаты (protein alignment graphs\*)

#### **Confusion matrix**

|              | true 5  | true 4 | true 3 | true 2 | true 1 | class<br>precision |
|--------------|---------|--------|--------|--------|--------|--------------------|
| pred. 5      | 382     | 11     | 0      | 0      | 0      | 97.20%             |
| pred. 4      | 0       | 0      | 0      | 0      | 0      | 0.00%              |
| pred. 3      | 0       | 0      | 0      | 0      | 0      | 0.00%              |
| pred. 2      | 0       | 0      | 0      | 0      | 0      | 0.00%              |
| pred. 1      | 0       | 0      | 0      | 0      | 0      | 0.00%              |
| class recall | 100.00% | 0.00%  | 0.00%  | 0.00%  | 0.00%  |                    |

#### Точность предсказания на тестовой выборке - 97.2% (382 из 393).

<sup>\*</sup>N. Malod-Dognin, R. Andonov, and N. Yanev, Maximum Cliques in Protein Structure Comparison, in Lecture Notes in Computer Science, 6049, SEA 2010, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 106-117.



# Вычислительные результаты (protein alignment graphs)

## Среднее сокращение времени вычислений предложенного подхода относительно каждого из рассматриваемых алгоритмов в отдельности

| MaxCLQ | MCS    | RPC, $\delta=1$ | RPC, $\delta=2$ | RPC, $\delta=3$ | Наиболее<br>быстрый<br>алгоритм | Предложен<br>ный<br>подход |
|--------|--------|-----------------|-----------------|-----------------|---------------------------------|----------------------------|
| 96,08% | 32,69% | 13,18%          | 0,56%           | -4,46%          | -4,47%                          | 0,00%                      |



10 – 14 мая, 2017, H. Новгород <a href="https://nnov.hse.ru/en/latna/conferences/school2017">https://nnov.hse.ru/en/latna/conferences/school2017</a>



http://intelligent-optimization.org/lion11/



22 – 24 июня, 2017, H. Новгород <a href="https://nnov.hse.ru/en/latna/conferences/net2017">https://nnov.hse.ru/en/latna/conferences/net2017</a>



# Спасибо за внимание!