

Models and algorithms for the cell formation problem

Ilya Bychkov

Laboratory of Algorithms and Technologies for Network Analysis

NRU HSE, 2017

Introduction

Cellular manufacturing is a manufacturing philosophy that attempts to convert a manufacturing system into a number of cells.

Cellular manufacturing offers certain advantages production lines like the reduction of setup and transfer costs, the minimization of inventory, improved quality, and significant savings in plant space.

Informal definition: We are given a set of machines (rows), set of parts (columns) and processing plans. The task is to group machines and parts into production cells (clusters) to optimize production process in some ways.

	1	2	3	4	5	6	7
1	1	0	0	0	1	1	1
2	0	1	1	1	1	0	0
3	0	0	1	1	1	1	0
4	1	1	1	1	0	0	0
5	0	1	0	1	1	1	0

Problem instance with 5 machines and 7 parts

Solution

Biclustering Problems

Li, Guojun, et al. "QUBIC: a qualitative biclustering algorithm for analyses of gene expression data." *Nucleic acids research* 37.15 (2009): e101-e101.

CFP Variants & Constraints

- cell size (zerotones, singletones, bounded cell size)
- number of cells (fixed or variable)
- processing sequences
- alternate process plans

Objective functions

• Grouping Efficiency (Chandrasekharan & Rajagopalan, 1989)

$$\eta = q\eta_1 + (1-q)\eta_2, \quad \eta_1 = rac{n_1^{in}}{n^{in}}, \ \eta_2 = rac{n_0^{out}}{n^{out}}$$

• Grouping Efficacy (Chandrasekharan & Rajagopalan, 1990)

$$\tau = \frac{n_1 - n_1^{out}}{n_1 + n_0^{in}} = \frac{n_1^{in}}{n_1 + n_0^{in}}$$

• E + V (exceptional elements + voids)

With grouping efficiency even a bad solution having large number of exceptional elements may have efficiency value from 75% to 100%

Grouping efficacy measure addresses the best the block-diagonal structure

Grouping Efficiency = 88.88% Grouping Efficacy = 63.63% E + V = 4

Sarker B.R., Khan M.(2001). A comparison of existing grouping efficiency measures and a new weighted grouping efficiency measure. IIE Transactions, 33,11-27.

Straightforward formulation

Decision variables:

$$x_{ik} = \begin{cases} 1, & \text{if machine } i \text{ belongs to cell } k, \\ 0, & \text{otherwise} \end{cases}$$
$$y_{jk} = \begin{cases} 1, & \text{if part } j \text{ belongs to cell } k, \\ 0, & \text{otherwise} \end{cases}$$

$$max \quad \frac{\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{c} a_{ij} x_{ik} y_{jk}}{\sum_{i=1}^{m} \sum_{j=1}^{p} a_{ij} + \sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{c} (1 - a_{ij}) x_{ik} y_{jk}}$$
(1)

$$\sum_{k=1}^{c} x_{ik} = 1 \quad i = 1, ..., m$$

(2)
$$\sum_{i=1}^{m} x_{ik} \le m \cdot \sum_{j=1}^{p} y_{jk} \quad k = 1, ..., c$$
(4)

$$\sum_{k=1}^{c} y_{jk} = 1 \quad j = 1, ..., p$$

$$\sum_{i=1}^{p} y_{jk} \le p \cdot \sum_{i=1}^{m} x_{ik} \quad k = 1, ..., c$$
 (5)

(3)

Approaches:

- clustering methods (rank-order clustering, single-linkage clustering, direct clustering algorithm)

- metaheuristics (genetic algorithms, tabu search, particle-swarm optimization, simulated annealing)

- graph partitioning approaches

- mathematical programming

Only a few authors have aimed to develop exact methods and most of these methods have some major restrictions such as a fixed number of production cells.

MILP model by Elbenani and Ferland(2012)

Suggested a linear integer programming model and used Dinkelbach algorithm for grouping efficacy linearization.

Problem is solved for fixed number of production cells, so the solutions cannot be considered as global optimal solutions.

Generally this model is quite fast, but in some cases algorithm has been stopped due to cpu time/memory limitations.

Elbenani, Bouazza, and Jacques A. Ferland. *Cell formation problem* solved exactly with the Dinkelbach algorithm. Vol. 7. CIRRELT, 2012.

2 exact approaches from Brusco (2015)

MILP model

Model based on two-mode clustering with some special assumptions (same number of clusters for rows and columns). Also used fixed number of production cells, but several numbers are considered in some cases. The model runs too long even on medium-sized problem instances.

Branch-and-Bound

Using its own ILS heuristic for initial solution generation. Works quite fast on the problem instances with grouping efficacy value from 0.65 to 0.7. Several possible numbers of production cells are considered for smallsized problem instances.

Brusco, Michael J. "An exact algorithm for maximizing grouping efficacy in part-machine clustering." *IIE Transactions* 47.6 (2015): 653-671.

MILP model by Bychkov et al. (2014)

The optimal number of production cells are determined automatically.

Works fast on the small-sized instances, but number of variables and constraints grows as $O(m^2 * p)$. This doesn't allow to solve even medium-sized problem instances.

Bychkov, I.S., Batsyn, M.V., Pardalos P.M.(2014). Exact model for the cell formation problem. Optimization Letters, 8(8), 2203-2210.

Exact algorithm by Pinheiro et al. (2016)

Used bicluster graph editing problem to solve manufacturing cell formation.

Have 2 cases considered – with no restrictions on cell's sizes and with minimum size 2x2

Runs very fast, proved optimality for many problem instances.

Pinheiro, R. G. S.; Martins, I. C.; Protti, F.; Ochi, L. S.; Simonetti, L. & Subramanian, A. (2016), On Solving Manufacturing Cell Formation via Bicluster Editing, European Journal of Operational Research, 254, 3, 769-779

Exact algorithm by Pinheiro et al. (2016)

Used **Bicluster Graph Editing Problem** to solve manufacturing cell formation.

Three-Index Model

Proposition 1 Let τ be the grouping efficacy value for some feasible CFP solution. Then n_0^{in} in the optimal solution is not greater than $\lfloor \frac{1-\tau}{\tau}n_1 \rfloor$.

Proof Since τ is the value of the objective function of a feasible CFP solution, then it is not greater than the optimal value τ^*

$$\tau \le \tau^* = \frac{n_1^{in}}{n_1 + n_0^{in}}$$

Therefore,

$$n_0^{in} \le \frac{n_1^{in} - \tau n_1}{\tau}$$

Since $n_1^{in} \le n_1$ and n_0^{in} is integer, we have the required upper bound

$$n_0^{in} \le \left\lfloor \frac{1-\tau}{\tau} n_1 \right\rfloor$$

Note that when the considered feasible solution is optimal ($\tau = \tau^*$) and it contains all the ones inside the cells ($n_1^{in} = n_1$) then n_0^{in} is exactly equal to this upper bound. \Box

Three-Index Model

$$max \sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{c} a_{ij} z_{ijk} \quad (1)$$

$$z_{ijk} \le x_{ik} \quad \forall i = 1, \dots, m, \ \forall j = 1, \dots, p, \ \forall k = 1, \dots, c$$

$$(2)$$

$$z_{ijk} \le y_{jk} \quad \forall i = 1, \dots, m, \ \forall j = 1, \dots, p, \ \forall k = 1, \dots, c$$
(3)

144

$$z_{ijk} \ge x_{ik} + y_{jk} - 1 \quad \forall i = 1, \dots, m, \ \forall j = 1, \dots, p, \ \forall k = 1, \dots, c$$
 (4)

$$\sum_{k=1}^{c} x_{ik} = 1 \quad \forall i = 1, \dots, m \quad (5)$$

$$\sum_{k=1}^{c} y_{jk} = 1 \quad \forall j = 1, \dots, p \quad (6)$$

$$\sum_{k=1}^{m} \sum_{j=1}^{p} z_{ijk} \ge \sum_{i=1}^{m} x_{ik} \quad \forall k = 1, \dots, c \quad (7)$$

$$\sum_{i=1}^{m} \sum_{j=1}^{p} z_{ijk} \ge \sum_{j=1}^{p} y_{jk} \quad \forall k = 1, \dots, c \quad (8)$$

$$\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{c} (1 - a_{ij}) z_{ijk} = n_0^{in} \quad (9)$$

 $x_{ik}, y_{jk}, z_{ijk} \in \{0, 1\} \quad \forall i = 1, \dots, m, \ \forall j = 1, \dots, p, \ \forall k = 1, \dots, c$ (10)

Three-Index Model

#	Test Instance	Size	Efficacy	Time	Zeroes in
1	King and Nakornchai	5×7	82.35	0.63	3
2	Waghodekar and Sahu	5×7	69.57	2.29	3
3	Seifoddini	5×18	79.59	5.69	3
4	Kusiak	6×8	76.92	1.86	4
5	Kusiak and Chow	7×11	60.87	9.14	0
6	Boctor	7×11	70.83	5.15	3
7	Seifoddini and Wolfe	8×12	69.44	13.37	1
8	Chandrasekharan and Rajagopalan	8×20	85.25	18.33	0
9	Chandrasekharan and Rajagopalan	8×20	58.72	208.36	18
10	Mosier and Taube	10×10	75.00	6.25	4
11	Chan and Milner	10×15	92.00	2.93	4
12	Askin and Subramanian	14×23	72.06	259.19	10
13	Stanfel	14×24	71.83	179.21	10
14	McCormick et al.	16×24	51.61a	20,829.38a	8
15	Srinivasan et al.	16×30	69.00a	13,719.99a	13
16	King	16×43	57.53a	24,930.93a	20
17	Carrie	18×24	57.73a	13,250.01a	8
18	Mosier and Taube	20×20	38.71a	43,531.77a	44

#	Test Instance	Size	Efficacy	Time	Zeroes in
19	Kumar et al.	20×23	46.72a	33,020.13a	9
20	Carrie	20×35	77.85a	11,626.98a	22
21	Boe and Cheng	20×35	46.75a	33,322.08a	1
22	Chandrasekharan and Rajagopalan	24×40	100.00	1.64	0
23	Chandrasekharan and Rajagopalan	24×40	85.11a	6,916.24a	11
24	Chandrasekharan and Rajagopalan	24×40	56.49a	14,408.88a	0
25	Chandrasekharan and Rajagopalan	24×40	46.56a	34,524.47a	0
26	Chandrasekharan and Rajagopalan	24×40	43.51a	41,140.94a	0
27	Chandrasekharan and Rajagopalan	24×40	41.22a	44,126.76a	0
28	McCormick et al.	27×27	54.02a	22,627.28a	31
29	Carrie	28×46	24.65a	71,671.08a	4
30	Kumar and Vannelli	30×41	48.44a	22,594.20a	0
31	Stanfel	30×50	50.65a	31,080.82a	0
32	Stanfel	30×50	38.32a	48,977.01a	0
33	King and Nakornchai	30×90	39.41a	99,435.64a	29
34	McCormick et al.	37×53	59.60a	47,744.04a	17
35	Chandrasekharan and Rajagopalan	40×100	84.03a	24,167.76a	37

Objective Linearization

If we consider a fractional programming model with the following objective function:

$$Q(x) = \frac{P(x)}{D(x)},\tag{6}$$

then Dinkelbach procedure is the following:

- Step 1 take some feasible solution x^0 , compute $\lambda_1 = \frac{P(x^0)}{D(x^0)}$ and let k = 1
- Step 2 solve the original problem with objective function Q(x) replaced with F(λ_k) = P(x) − λ_kD(x) → max and let x^k be the optimal solution
- Step 3 If F(λ_k) = 0 (or less then some predefined tolerance) then stop the procedure and return x^k as the optimal solution.

Else k = k + 1, $\lambda_k = \frac{P(x^k)}{D(x^k)}$ and goto step 2.

Two-Index Model

Two-index model:

 $2x_{ik} - y_{ij} - y_{kj} \ge -1$ $i, k = 1, \dots, m$ $j = 1, \dots, p$

$$x_{ik} = \begin{cases} 1, & \text{if machines } i \text{ and } k \text{ are in the same cell,} \\ 0, & \text{otherwise} \end{cases}$$

 $y_{ij} = \begin{cases} 1, & \text{if machine } i \text{ and part } j \text{ are in the same cell,} \\ 0, & \text{otherwise} \end{cases}$

$$max \quad \sum_{i=1}^{m} \sum_{j=1}^{p} a_{ij} y_{ij} - \lambda \cdot (\sum_{i=1}^{m} \sum_{j=1}^{p} (1 - a_{ij}) y_{ij} + \sum_{i=1}^{m} \sum_{j=1}^{p} a_{ij})$$
(7)

Subject to:

$$\sum_{j=1}^{p} y_{ij} \ge 1 \quad i = 1, ..., m \tag{11}$$

$$y_{ij} - y_{kj} - x_{ik} \ge -1 \quad i, k = 1, \dots, m \quad j = 1, \dots, p \quad (9) \qquad \sum_{i=1}^{m} y_{ij} \ge 1 \quad j = 1, \dots, p \quad (12)$$

$$y_{kj} - y_{ij} - x_{ij} \ge -1 \quad i, k = 1, \dots, m \quad j = 1, \dots, p \quad (10)$$

(8)

We start with setting λ equal to the best known efficacy value for the considered cell formation problem instance.

Datasets

Table 3: Testset A - Instances

Table 5: Testset B - Instances

ID	Source	m	р
A1	King and Nakornchai (1982) - Figure 1a	5	7
A2	Waghodekar and Sahu (1984) - Problem 2	5	7
A3	Seifoddini (1989b)	5	18
A4	Kusiak and Cho (1992)	6	8
A5	Kusiak and Chow (1987)	7	11
A6	Boctor (1991) - Example 1	7	11
A7	Seifoddini and Wolfe (1986)	8	12
A8	Chandrasekaran and Rajagopalan (1986a)	8	20
A9	Chandrasekaran and Rajagopalan (1986b)	8	20
A10	Mosier and Taube (1985a)	10	10
A11	Chan and Milner (1982)	15	10
A12	Askin and Subramanian (1987)	14	24
A13	Stanfel (1985)	14	24
A14	McCormick et al. (1972)	16	24
A15	Srinivasan et al. (1990)	16	30
A16	King (1980)	16	43
A17	Carrie (1973)	18	24
A18	Mosier and Taube (1985b)	20	20
A19	Kumar et al. (1986)	23	20
A20	Carrie (1973)	20	35
A21	Boe and Cheng (1991)	20	35
A22	Chandrasekharan and Rajagopalan (1989) - Dataset 1	24	40
A23	Chandrasekharan and Rajagopalan (1989) - Dataset 2	24	40
A24	Chandrasekharan and Rajagopalan (1989) - Dataset 3	24	40
A25	Chandrasekharan and Rajagopalan (1989) - Dataset 5	24	40
A26	Chandrasekharan and Rajagopalan (1989) - Dataset 6	24	40
A27	Chandrasekharan and Rajagopalan (1989) - Dataset 7	24	40
A28	McCormick et al. (1972)	27	27
A29	Carrie (1973)	28	46
A30	Kumar and Vannelli (1987)	30	41
A31	Stanfel (1985) - Figure 5	30	50
A32	Stanfel (1985) - Figure 6	30	50
A33	King and Nakornchai (1982)	30	90
A34	McCormick et al. (1972)	37	53
A35	Chandrasekharan and Rajagopalan (1987)	40	100

ID	Source	m	р
B 1	Adil (1996)	6	6
B2	Pa Rkin and Li (1997)	6	7
B3	Brown and Sumichrast (2001)	6	11
B4	Chan and Milner (1982)	7	5
B5	Kusiak and Chow (1987)	7	8
B6	Zolfaghari and Liang (2002)	7	8
B7	Won and Kim (1997)	7	10
B8	Sarker and Khan (2001)	8	8
B9	Nair (1999)	8	10
B10	Islam and Sarker (2000)	8	10
B11	Kumar et al. (1986)	9	15
B12	Ham et al. (1985)	10	8
B13	Viswanathan (1996)	10	12
B14	Shargal et al. (1995)	10	38
B15	Won and Kim (1997)	11	10
B16	Seifoddini (1988)	11	22
B17	Moon and Chi (1992)	12	19
B18	Li (2003)	14	14
B19	Chan and Milner (1982) - Fig.3a	15	10
B20	Yang and Yang (2008) - Fig.6b	15	15
B21	Yang and Yang (2008) - Fig.6c	15	15
B22	Yang and Yang (2008) - Fig.6d	15	15
B23	Harhalakis et al. (1994)	17	20
B24	Seifoddini and Djassemi (1991)	18	24
B25	Sandbothe (1998)	20	10
B26	Nagi et al. (1990)	20	51
B27	Won and Kim (1997)	26	28
B28	Yang and Yang (2008) - Fig.7	28	35
B29	Seifoddini and Djassemi (1996)	35	15
B30	Seifoddini and Djassemi (1996)	41	50
B31	Yang and Yang (2008) - Fig.12	46	105
B32	Zolfaghari and Liang (1997)	50	150

Alexander .
I A TRACE
And the second

ī		T	ïme, sec		E	fficacy	
	#	Elbenani &	Bychkov		Elbenani &	Bychkov	
	#	Ferland (2012)	et al.	two-index	Ferland (2012)	et al.	two-index
			(2014)	model	(cells)	(2014)	model
Ī	A1	2.3	0.63	0.00	0.8235(2)	0.8235	0.8235
	A2	1.6	2.29	0.00	0.6957(2)	0.6957	0.6957
	A3	3.1	5.69	0.00	0.7959(2)	0.7959	0.7959
	A4	2.0	1.86	0.09	0.7692(2)	0.7692	0.7692
	A5	30.6	9.14	0.17	0.6087(5)	0.6087	0.6087
	A6	4.3	5.15	0.01	0.7083(4)	0.7083	0.7083
	A7	9.6	13.37	0.02	0.6944(4)	0.6944	0.6944
	A8	3.1	18.33	0.01	0.8525(3)	0.8525	0.8525
	A9	3.5	208.36	0.45	0.5872(2)	0.5872	0.5872
	A10	1.1	6.25	0.00	0.7500(5)	0.7500	0.7500
	A11	1.6	2.93	0.02	0.9200(3)	0.9200	0.9200
	A12	2188.7	259.19	0.19	0.7206(7)	0.7206	0.7206
	A13	593.2	179.21	0.23	0.7183(7)	0.7183	0.7183
	A14	15130.5	*	4.24	0.5326(8)	*	0.5326
	A15	252.5	*	0.25	0.6953(6) ^E	*	0.6899
	A16	183232.5	*	4.80	0.5753(8)	*	0.5753
	A17	2345.6	*	3.82	0.5773(9)	*	0.5773
	A18	*	*	32243.10	*	*	0.4345
	A19	131357.5	*	245.59	0.5081(7)	*	0.5081
	A20	31.1	*	0.22	0.7791(5)	*	0.7791
	A21	14583.6	*	24.34	0.5798(5)	*	0.5798
	A22	11.3	1.64	0.14	1.0000(7)	1.0000	1.0000
	A23	230.7	*	0.12	0.8511(7)	*	0.8511
	A24	1101.1	*	0.16	0.7351(7)	*	0.7351
	A25	*	*	1026.96	*	*	0.5329
	A26	*	*	178182.24	*	*	0.4895
	A27	*	*	*	*	*	*
	A28	958714.1	*	1964.00	0.5482(5)	*	0.5482
	A29	*	*	*	*	*	*
	A30	378300.0	*	8.72	0.6331(14)	*	0.6331
	A31	*	*	136.00	0.6012(13) ^E	*	0.5977
	A32	*	*	*	*	*	*
	A33	*	*	*	*	*	0.4800
	A34	268007.6	*	16323.71	0.6064(3)	*	0.6064
	A35	7365.3	*	1.34	0.8403(10)	*	0.8403

N. AS	ĉ
LAT	
RETERIOR	

		Time, sec				Efficacy			
	#		Pinheiro et al.	Pinheiro et al.		Brusco	Pinheiro		
	*	Brusco	(2016)	(2016)	two-index	(2015)	et al.	two-index	
		(2015)	IM	ILP		(cells)	(2016)		
ĺ	A1	0.01	0.16	0.01	0.01	0.8235(2,3,4)	0.7500 ^E	0.8235	
	A2	0.01	0.07	0.01	0.01	0.6957(2,3,4)	0.6956	0.6957	
	A3	0.02	0.09	0.03	0.01	0.8085(2,3,4)	0.8085	0.8085	
	A4	0.01	0.02	0.01	0.01	0.7916(2,3,4)	0.7917	0.7917	
	A5	0.6	0,29	0.06	0.17	0.6087(2,3,4,5,6)	0.6087	0.6087	
	A6	0.04	0.14	0.01	0.01	0.7083(2,3,4,5)	0.7083	0.7083	
	A7	0.08	0.18	0.03	0.01	0.6944(2,3,4,5)	0.6944 ^E	0.6944	
	A8	0.01	2.06	0.04	0.01	0.8525(2,3,4)	0.8525	0.8525	
	A9	35.86	81.46	4.94	0.45	0.5872(2,3,4)	0.5872	0.5872	
	A10	0.06	0.03	0.01	0.01	0.7500(2,3,4,5,6)	0.7500	0.7500	
	A11	0.01	0.01	0.02	0.02	0.9200(2,3,4)	0.9200	0.9200	
	A12	633.91	0.49	0.09	0.03	0.7424(6,7,8)	0.7424	0.7424	
	A13	2631.76	0.49	0.11	0.03	0.7285(6,7,8)	0.7286	0.7286	
	A14	24716.34	600.98	144.91	4.88	0.5385(8)	0.5333 ^E	0.5385	
	A15	1279.93	7.24	0.54	0.16	0.6992(5,6,7)	0.6992 ^E	0.6992	
	A16	-	1156.23	125.62	4.24	-	0.5804	0.5804	
	A17	20840.55	87.13	42.32	3.84	0.5773(9)	0.5773 ^E	0.5773	
	A18	-	*	*	52810.10	-	*	0.4397	
	A19	1375608.66	23928.70	1771.99	249.52	0.5081(7)	0.5081	0.5081	
	A20	4830.00	1.78	14.55	0.09	0.7888(5,6,7)	0.7938 ^E	0.7888	
	A21	-	2145.24	305.48	22.60	-	0.5879 ^E	0.5860	
	A22	0.01	0.02	0.15	0.14	1.0000(7)	1.0000	1.0000	
	A23	42.29	10.08	0.44	0.14	0.8511(7)	0.8511	0.8511	
	A24	208158.02	17.46	0.78	0.20	0.7351(7)	0.7351	0.7351	
	A25	-	371233.00	48743.90	759.70	-	0.5329 ^E	0.5329	
	A26	-	*	*	134418.65	-	*	0.4895	
	A27	-	*	*	*	-	*	*	
	A28	-	*	*	46361.97	-	*	0.5482	
	A29	-	*	*	*	-	*	*	
	A30	-	183.71	41.53	8.00	-	0.6304 ^E	0.6331	
	A31	-	13807.50	2622.06	64.82	-	0.5977	0.5977	
	A32	-	*	*	234055.90	-	*	0.5084	
	A33	-	*	*	*	-	*	0.4829	
	A34	-	*	*	14212.57	-	*	0.6131	
	A35	-	325.53	18.22	1.61	-	0.8403	0.8403	

	Т	ime		Efficacy	
	two-index	two-index	Heuristic	two-index	two-index
#	(no residual	(allow	bound	(no residual	(allow
	cells)	residual cells)		cells)	residual cells)
B 1	0.01	0.01	0.8095	0.8095	0.8095
B2	0.01	0.01	0.7222	0.7222	0.7222
B3	0.25	0.03	0.6071	0.6071	0.6071
B4	0.01	0.01	0.8889	0.8889	0.8889
B5	0.01	0.01	0.7500	0.7500	0.7500
B6	0.01	0.01	0.7391	0.7391	0.7391
B 7	0.01	0.01	0.8148	0.8148	0.8148
B 8	0.01	0.01	0.7222	0.7222	0.7222
B9	0.01	0.01	0.7576	0.7576	0.7576
B10	0.01	0.01	0.9000	0.9000	0.9000
B11	0.01	0.02	0.7273	0.7273	0.7297
B12	0.01	0.01	0.8276	0.8276	0.8276
B13	0.36	0.80	0.5962	0.5962	0.6042
B14	0.25	0.30	0.6405	0.6405	0.6405
B15	0.01	0.01	0.8333	0.8333	0.8333
B16	0.16	0.06	0.7391	0.7391	0.7444
B17	0.98	0.26	0.6552	0.6552	0.6842
B18	1.82	1.65	0.6027	0.6129	0.6129
B19	0.03	0.06	0.8000	0.8000	0.8113
B20	0.05	0.03	0.8710	0.8710	0.8710
B21	0.03	0.04	0.8333	0.8333	0.8333
B22	0.05	0.01	0.7258	0.7258	0.7258
B23	0.05	0.06	0.8111	0.8111	0.8111
B24	4.79	7.80	0.5673	0.5673	0.5728
B25	0.20	0.10	0.7600	0.7600	0.8000
B26	13.81	25.75	0.6068	0.6068	0.6078
B27	0.25	0.28	0.7248	0.7248	0.7248
B28	0.83	1.04	0.6729	0.6729	0.6729
B29	33.82	51.76	0.5730	0.5730	0.5745
B30	4.76	8.67	0.7308	0.7308	0.7325
B31	19.69	17.50	0.6798	0.6798	0.6798
B32	*	*	0.6193	*	*

Table 9: Testset B - Computational results

Figure 1: Testset A - No residual cells. Running times comparison.

Brusco (2015)
 Pinheiro et al. (2016)
 Two-index model

Figure 2: Testset A - Allowed residual cells. Running times comparison.

Contributions

LAT

Bychkov et al.(2014) Exact model for the Cell Formation Problem // Optimization Letters. 2014. Vol. 8. No. 8. P. 2203-2210.

- A new exact model for the cell formation problem has been suggested (three-index model)
- For many existing manufacturing cell formation problem instances global optimality of existing solutions has been probed
- Bychkov & Batsyn (2017) An efficient exact model for the cell formation problem with variable number of production cells // Computers & Operations Research (On review)
- A new efficient simple exact model without direct machine-to-cell or part-to-cell relations for the manufacturing cell formation has been suggested (**two-index model**)
- Almost all the existing problem instances are solved exactly with respect to variable number of production cells
- One new dataset collected from the literature and the corrected classical 35GT dataset are provided for future research

Contributions

- Batsyn, M., Bychkov, I., Goldengorin, B., Pardalos, P., & Sukhov, P. (2013). Pattern-based heuristic for the cell formation problem in group technology. In *Models, Algorithms, and Technologies for Network Analysis* (pp. 11-50). Springer, New York, NY.
- Bychkov, I., Batsyn, M., Sukhov, P., & Pardalos, P. M. (2013). Heuristic algorithm for the cell formation problem. In *Models, Algorithms, and Technologies for Network Analysis* (pp. 43-69). Springer, New York, NY.
- Bychkov I., Batsyn M., & Pardalos P.M. (2017). Heuristic for Maximizing Grouping Efficiency in the Cell Formation Problem. In Models, Algorithms, and Technologies for Network Analysis: NET 2016, Nizhny Novgorod, Russia, Springer Proceedings in Mathematics and Statistics, Springer International Publishing. Springer International Publishing.

Contributions

LATH

One new dataset collected from the literature and the corrected classical 35GT dataset are provided for future research

opt	-hu	b			9	Database 🔟 S	itats 🔹	Log In 🔒 Join us!
			Cell Form biclustering manuf	ation Pl	roblem actional objective			
(i) Info	Object	ives Constraints	Ĺ]] Instances	P Results	5	C Commit
	Objective Constraints		 Grouping efficacy Allow singletons Allow residual c 	ells				
	Proble	em instance	5 x 7 King & Nakornchai(1982) - Figure 1a					
							Search:	
	Rank	Author	Approach	Paper	Submitted	Objective	Exact	Actions
	8	Ilya Bychkov	Two-index MILP	Link	21 Dec 2016	0.8235		
	8	Michael J. Brusco	Iterated Local Search	Link	06 Jan 2017	0.8235		
Sho	owing 1 to 2 (of 2 entries					Previou	is 1 Next

NRU HSE, 2017