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The goal of our research is theoretical analysis of stability for a class of
explicit di�erence schemes approximating gas dynamic equations.
This class of schemes is �rst of all linked to the names of B.N.
Chetverushkin, T.G. Elizarova, Y.V. Sheretov, etc., and to transition to a
regularized (quasi-gasdynamics) system of equations.
In this report, the system of equations for one-dimensional barotropic gas
dynamics is considered. In addition to the su�cient condition for
linearized stability (weak conservativeness) recently obtained by Y.V.
Sheretov, the following is accomplished:

• A necessary spectral (von Neumann) condition for weak
conservativeness is obtained

• A criterion (necessary and su�cient) condition for weak
conservativeness is obtained

• Numerical experiments on weak conservativeness are done in the
original nonlinear formulation.
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1D barotropic quasi-gasdynamic (QGD)-system of equations has the
following form:

∂tρ+ ∂x j = 0, ∂t(ρu) + ∂x(ju + p(ρ)− Π) = 0, (1)

j = ρ(u − w), w =
τ

ρ
∂x(ρu2) + ŵ , ŵ =

τ

ρ
[ρu∂xu + p′(ρ)], (2)

Π = ΠNS + ρuŵ + τp′(ρ)∂x(ρu). (3)

Here j and Π are regularized mass �ow and stress, τ = τ(ρ) > 0 is a
regularization parameter, and ΠNS = µ(ρ)∂xu is a viscous stress of
Navier-Stokes, µ(ρ) ≥ 0 is proportional to the viscosity coe�cient.
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The system is linearized on a constant solution ρ∗ ≡ const > 0, u∗ = 0.
Substituting the solution in the form ρ = ρ∗ + ∆ρ, u = u∗ + ∆u in the
equations and neglecting the terms having at least second in�nitesimal
order with respect to ∆ρ, ∆u and their derivatives leads to the following
system of equations:

∂t∆ρ+ ρ∗∂x∆u = 0, ρ∗∂t∆u + p′(ρ∗)∂x∆ρu = 0. (4)

For dimensionless variables ρ̃ = ∆ρ
ρ∗
, ũ = ∆u√

p′(ρ∗)
we gain a system of

equations of acoustics:

∂t ρ̃+
√

p′(ρ∗)∂x ũ = 0, ∂t ũ +
√

p′(ρ∗)∂x ρ̃ = 0. (5)

Here
√

p′(ρ∗) is a background velocity of sound. Given the initial values
ρ̃|t=0 = ρ̃0, ũ|t=0 = ũ0 (that one may consider complex-valued) the
conservation law holds for the last system:

‖ρ̃(·, t)‖2
L2(R) + ‖ũ(·, t)‖2

L2(R) = ‖ρ̃0‖2
L2(R) + ‖ũ0‖2

L2(R) for t ≥ 0. (6)
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Let ωh be a uniform mesh on R having nodes xk = kh, k ∈ Z and step
h = X/N. Let ω∗h be an intermediate mesh having nodes
xk+1/2 = (k + 0.5)h, k ∈ Z. De�ne a uniform mesh in t having nodes
tm = m∆t, m ≥ 0 and step ∆t. We de�ne the shift, averaging and
di�erence mesh operators

v±,k = vk±1, (sv)k−1/2 =
vk + vk+1

2
, (δv)k−1/2 =

vk − vk−1

h
,

(δ∗y)k =
yk+1/2 − yk−1/2

h
, δtv =

v̂ − v

∆t
, v̂m = vm+1.
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We consider a standard two-level explicit and three-point symmetric in
space discretization of equations:

ρ̃− ρ
∆t

+ δ∗j = 0,

ρ̃ũ − ρu
∆t

+ δ∗(j · su + s · p(ρ)− Π) = 0,

j = (sρ)su − (sρ)w ,

(sρ)w = τ̃ [δ(ρu)]su + (sρ)ŵ ,

(sρ)ŵ = τ̃ [(sρ)(su)δu + δp(ρ)],

Π = µδu + (su)(sρ)ŵ + τ(sp′(ρ))δ(ρu).
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Linearized di�erence scheme

We linearize the scheme on a constant solution ρ∗ ≡ const > 0, u∗ = 0.
We write its solution in the form ρ = ρ∗ + ∆ρ, u = u∗ + ∆u and neglect
terms that have the second in�nitesimal order with respect to ∆ρ, ∆u.
So we have

δt∆ρ+ ρ∗δ
∗s∆u − τ(ρ∗)p

′(ρ∗)δ
∗δ∆ρ = 0,

ρ∗δt∆u + p′(ρ∗)δ
∗s∆ρ−

[
µ(ρ∗) + τ(ρ∗)ρ∗p

′(ρ∗)
]
δ∗δ∆u = 0.

For dimensionless variables ρ̃ = ∆ρ
ρ∗
, ũ = ∆u

c∗
we have the equations

δt ρ̃+ c∗δ
∗sũ − τ(ρ∗)c

2
∗δ
∗δρ̃ = 0, (7)

δt ũ + c∗δ
∗s ρ̃−

[µ(ρ∗)

ρ∗
+ τ(ρ∗)c

2
∗

]
δ∗δũ = 0, (8)
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Linearized di�erence scheme

We assume that the regularization parameter and viscosity coe�cient are
evaluated by the formulae

τ(ρ) =
αh√
p′(ρ)

, µ(ρ) = αsτ(ρ)ρp′(ρ),

where α > 0 and αs ≥ 0 are parameters. Then (omitting tildes above ρ,
u), the equations (7), (8) may be rewritten in the following recurrent form

ρ̂ = ρ− β

2
(u+ − u−) + αβ(ρ− − 2ρ+ ρ−), (9)

û = u − β

2
(ρ+ − ρ−) + καβ(u+ − 2u + u−) (10)

with three parameters α, β := c∗
∆t
h and κ := αs + 1 ≥ 1. The functions

ρ0 and u0 are given, i. e., we consider the initial-value (Cauchy) problem
for the scheme. Further it will be convenient for us to consider ρ and u as
complex-valued functions.



Introduction Di�erence Schemes Theoretical study of linerarized di�erence schemes Numerical Experiments Conclusion

Weak conservativeness analysis
We consider a column-vector function ym = (ρm um)T , m ≥ 0 and
rewrite the linearized di�erence scheme (9), (10) in the matrix form

ŷ =

(
αβ β

2
β
2 καβ

)
y− +

(
1− 2αβ 0

0 1− 2καβ

)
y +

(
αβ −β2
−β2 καβ

)
y+.

Let H be a Hilbert space of complex-valued square-summable vector
functions on ωh, i. e., having a �nite norm

‖y‖H =
(
h
∞∑

k=−∞

|yk |2
)1/2

.

Given y0 = (ρ0 u0)T ∈ H, we have ym ∈ H for any m ≥ 1. We say that
the scheme (10) is weakly conservative if the following estimate holds:

sup
m≥0
‖ym‖H ≤ ‖y0‖H ∀y0 ∈ H. (11)

Our numerical experiments show that namely this property corresponds
well to numerical solutions without the spurious oscillations for our class
of schemes.
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We substitute a solution of the form ymk = e ikξvm(ξ), k ∈ Z, m ≥ 0, in
(10), where i is the imaginary unit, 0 ≤ ξ ≤ 2π, so we get

v̂(ξ) = G (ξ)v(ξ), G (ξ) =

(
1− ω1 −iω2

−iω2 1− κω1

)
, (12)

where we de�ne ω1 = 4αβθ, θ = sin2 ξ
2 ∈ [0, 1], ω2 = β sin ξ; we

emphasize that ω2
2 = 4β2θ(1− θ).

It can be proven that given y0 = (ρ0 u0)T ∈ H we can de�ne a function
v0 ∈ L2(0, 2π) such that

v0(ξ) =
1√
2π

∞∑
k=−∞

y0
ke
−ikξ,

and write the solution of the scheme (10) in the integral form

ymk =
1√
2π

∫ 2π

0

vm(ξ)e ikξ dξ, k ∈ Z,

where vm ∈ L2(0, 2π) by (12). The Parseval equality also holds:

‖ym‖H =
√
h ‖vm‖L2(0,2π), m ≥ 0. (13)
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It is known that the condition

max
0≤ξ≤2π

max
l
|λl
(
G (ξ)

)
| ≤ 1 (14)

is the necessary spectral condition for (11) to hold. Hereafter λl(A) are
eigenvalues of matrix A.

Lemma 1

The inequality

max
0≤ξ≤2π

max
l
λl
(
(G∗G )(ξ)

)
≤ 1 (15)

is a necessary and su�cient condition for (11) to hold.
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The following results are received:

Theorem 2

The necessary condition (14) holds if and only if

β ≤ min
{

(κ + 1)α,
1

2κα

}
. (16)

Theorem 3

The criterion (15) holds if and only if

β ≤ min
{

2α,
1

2κα

}
. (17)
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Theorem 4

For simpli�ed quasi-hydrodynamical regularization where we omit the
terms with δ(ρu) in the original scheme and τρ∗c

2
∗ in the linearized one:

1) in the case 0 ≤ αs ≤ 1 the necessary condition (14) and the criterion
(15) hold if and only if

β ≤ min
{

(αs + 1)α,
1

2α

}
, (18)

β ≤ min
{

2αsα,
1

2α

}
; (19)

respectively.
2) in the case αs ≥ 1 the results of the theorems 2 and 3 hold with
κ = αs .
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The following �gure presents necessary spectral condition, criterion for
weak conservativeness and the results of numerical experiments with
parameters γ = 2 (the shallow water equations), p1 = 1, κ = 7

3 . Consider
the Riemann problem on the time interval 0 ≤ t ≤ 0.5 with initial data:

ρ0(x) =

{
1, x < 0

0.1, x > 0
, u0(x) =

{
0.1, x < 0

0, x > 0
.

Fig.: the necessary condition, the criterion, the su�cient condition, stability

testing



Introduction Di�erence Schemes Theoretical study of linerarized di�erence schemes Numerical Experiments Conclusion

Conclusion

• The criterion (the necessary and su�cient condition) for weak
conservativeness is deduced for the �rst time for the considered kind
of schemes.

• The criterion turned out to be essentially wider than a su�cient
condition of Y.V. Sheretov.

• Practitioners often con�ne themselves by necessary conditions only.
In our case, the necessary spectral condition is too rough in the most
interesting region of parameters and therefore it is not good enough
for practical goals.

• Though derivation of the criterion is more complicated than that of
the necessary condition, it is namely the criterion that the results of
numerical experiments correspond well with.
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A�ci	u u�z d
emes��!

Thank you for your attention!
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