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Introduction

The goal of our research is theoretical analysis of stability for a class of
explicit difference schemes approximating gas dynamic equations.

This class of schemes is first of all linked to the names of B.N.
Chetverushkin, T.G. Elizarova, Y.V. Sheretov, etc., and to transition to a
regularized (quasi-gasdynamics) system of equations.

In this report, the system of equations for one-dimensional barotropic gas
dynamics is considered. In addition to the sufficient condition for
linearized stability (weak conservativeness) recently obtained by Y.V.
Sheretov, the following is accomplished:

e A necessary spectral (von Neumann) condition for weak
conservativeness is obtained

e A criterion (necessary and sufficient) condition for weak
conservativeness is obtained

e Numerical experiments on weak conservativeness are done in the
original nonlinear formulation.



Introduction

1D barotropic quasi-gasdynamic (QGD)-system of equations has the
following form:

Oep+ 0xj =0, Oe(pu) + dx(ju + p(p) — M) =0,
J=plu—w), w= %ax(puz) W, W= g[puaxu + 0 ()],
N = Nys + pui + 7p'(p) D (pu).

Here j and I are regularized mass flow and stress, 7 = 7(p) > 0 is a
regularization parameter, and MNys = p(p)Oxu is a viscous stress of
Navier-Stokes, 1(p) > 0 is proportional to the viscosity coefficient.



Introduction

The system is linearized on a constant solution p, = const > 0, u, = 0.
Substituting the solution in the form p = p. + Ap, u = u, + Au in the
equations and neglecting the terms having at least second infinitesimal
order with respect to Ap, Au and their derivatives leads to the following
system of equations:

OeDp+ puOxAu =0, p.0:Au+ p'(p.)0xDApu=0. (4)
For dimensionless variables p = ﬁp, i= A,(“ ; we gain a system of
. P’ (p~

equations of acoustics:

0ep+ /P (p)0xli = 0, Orii + /P (ps)0sfp = 0. (5)

Here \/p'(p.) is a background velocity of sound. Given the initial values
Pli=0 = Po, d|t=0 = fp (that one may consider complex-valued) the
conservation law holds for the last system:

18(, )72y + 11GC )72y = 1ol 2wy + 1ol 72wy for £>0.  (6)



Difference Schemes

Let wy be a uniform mesh on R having nodes x, = kh, k € Z and step
h= X/N. Let w}, be an intermediate mesh having nodes

X172 = (k +0.5)h, k € Z. Define a uniform mesh in t having nodes
tm = mAt, m > 0 and step At. We define the shift, averaging and
difference mesh operators

Vi + Vit Vk — Vk—1
Vi k = Vk+1, (SV)k—1/2 = %7 (5V)k—1/2 = 5
Yk+1/2 = Yk—-1/2 Vv . Ml
5* ="' 7 Siv= , = .
(0" y)k - V= V=



Difference Schemes

We consider a standard two-level explicit and three-point symmetric in
space discretization of equations:

p— p+5*_

P15 suts-p(p) —M)=0,

[ = (sp)su — (sp)w,
Fo(pu)]su + (sp)w,
w = F[(sp)(su)du + dp(p)],
N = pdu+ (su)(sp)W + 7(sp(p))d(pu).
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Linearized difference scheme

We linearize the scheme on a constant solution p, = const > 0, u, = 0.
We write its solution in the form p = p, + Ap, u = u, + Au and neglect
terms that have the second infinitesimal order with respect to Ap, Au.
So we have

8:Dp + p6*sAu — 7(ps)p (ps )0 0 Ap = 0,
ps0elu+ p'(pe)0*sDp — [u(ps) + 7(p) pup’ (p1)] 6% 0 AU = 0.

For dimensionless variables g = ﬁf, = i” we have the equations
5ef 4 C0%sii — T(p.) 2605 = 0, (7)
1(ps)

8o + c.0"sj — [ +r(p.)c| %6 =0, (8)

o



Theoretical study of linerarized difference schemes

Linearized difference scheme

We assume that the regularization parameter and viscosity coefficient are
evaluated by the formulae

7(p) = , w(p) = ast(p)pp'(p),

where @ > 0 and «s > 0 are parameters. Then (omitting tildes above p,
u), the equations (7), (8) may be rewritten in the following recurrent form

~

p=p—=(uy —u)+aB(p_ —2p+p_), (9)

0d=u—

N N

(ps — p) + 5aB(us — 2u+u_) (10)

with three parameters a, 8 := c*% and » := as + 1 > 1. The functions
p° and u® are given, i. e., we consider the initial-value (Cauchy) problem
for the scheme. Further it will be convenient for us to consider p and u as
complex-valued functions.



Theoretical study of linerarized difference schemes

Weak conservativeness analysis

We consider a column-vector function y™ = (p™ u™)", m > 0 and
rewrite the linearized difference scheme (9), (10) in the matrix form

. af g 1-2ap 0 af —g
y‘(f; w)”( 0 12mﬁ>”<—§ was) "

Let H be a Hilbert space of complex-valued square-summable vector
functions on wy, i. e., having a finite norm

o 1/2
Iyl =(h 3= el?) "
k=—oc0
Given y° = (p° u®)T € H, we have y™ € H for any m > 1. We say that

the scheme (10) is weakly conservative if the following estimate holds:

sup [yl < y°lln Vy® € H. (11)
m>0

Our numerical experiments show that namely this property corresponds
well to numerical solutions without the spurious oscillations for our class
of schemes.



Theoretical study of linerarized difference schemes

We substitute a solution of the form y7 = eikév™(¢), k € Z, m > 0, in
(10), where i is the imaginary unit, 0 < & < 27, so we get

4(6) = GEW(O). (€)= (1‘“’1 iz ) (12)

—iwy 1 — 2wy
where we define wy = 4a80, 6 = sin? % €10,1], wp = Bsin&; we
emphasize that w? = 43%0(1 — 0).
It can be proven that given y° = (p° u®)™ € H we can define a function
v0 € [2(0,27) such that

0 _—iké

1 o0
Vo(g) = Z Yk€ ’
vom
and write the solution of the scheme (10) in the integral form
1 2 .
W= / vT()et dg, k€ Z,
0

where v™ € [2(0,27) by (12). The Parseval equality also holds:

Iy™ s = VAVl 20,27y, m = 0. (13)
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It is known that the condition

0<rrga<>§7r max|)\/( ©)<1 (14)

is the necessary spectral condition for (11) to hold. Hereafter \;(A) are
eigenvalues of matrix A.

Lemma 1
The inequality

o2 max A ((67G)(¢)) <1 (15)

is a necessary and sufficient condition for (11) to hold.
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The following results are received:

Theorem 2
The necessary condition (14) holds if and only if

5§min{(%+ l)a,ﬁ}. (16)

Theorem 3
The criterion (15) holds if and only if

8 < min {204,%}. (17)

o
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Theorem 4

For simplified quasi-hydrodynamical regularization where we omit the
terms with §(pu) in the original scheme and Tp.c? in the linearized one:
1) in the case 0 < a5 < 1 the necessary condition (14) and the criterion
(15) hold if and only if

1
< 1 N
B < mln{(ozs—&—l)oz7 20[}, (18)
1
< mi — L
5 < min {204504, 2a}' (19)
respectively.

2) in the case as > 1 the results of the theorems 2 and 3 hold with
= os.
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The following figure presents necessary spectral condition, criterion for
weak conservativeness and the results of numerical experiments with
parameters v = 2 (the shallow water equations), py =1,k = % Consider
the Riemann problem on the time interval 0 < t < 0.5 with initial data:

o (B xS0y [o1 x<0
PP =01, x>0 %7 Y0, x>0

Fig.: the necessary condition, the criterion, the sufficient condition, stability
testing



Conclusion

Conclusion

The criterion (the necessary and sufficient condition) for weak
conservativeness is deduced for the first time for the considered kind
of schemes.

The criterion turned out to be essentially wider than a sufficient
condition of Y.V. Sheretov.

Practitioners often confine themselves by necessary conditions only.
In our case, the necessary spectral condition is too rough in the most
interesting region of parameters and therefore it is not good enough
for practical goals.

Though derivation of the criterion is more complicated than that of
the necessary condition, it is namely the criterion that the results of
numerical experiments correspond well with.
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Aciu uz démesy!
Thank you for your attention!
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