
Government of Russian Federation
Federal State Autonomous Educational Institution

of High Professional Education
National Research University “Higher School of Economics”

Faculty of Computer Science
School of Data Analysis and Artificial Intelligence

Syllabus for the course

“Fundamentals of Knowledge Representation”

\Osnovy predstavleni� znani$i"

dl� napravleni� 09.06.01 \Informatika i vyqislitel~na� tehnika,"

profili 05.13.01 \Sistemny$i analiz, upravlenie i obrabotka infor-

maii," 05.13.11 \Matematiqeskoe i programmnoe obespeqenie vyqisli-

tel~nyh maxin, kompleksov i komp~�ternyh sete$i," 05.13.17 \Teoretiq-

eskie osnovy informatiki," 05.13.18 \Matematiqeskoe modelirovanie,

qislennye metody i kompleksy programm"

podgotovki nauqno-pedagogiqeskih kadrov v aspiranture.

Author: Max I. Kanovich, Dr.Sc., Professor, mkanovich@hse.ru

Approved on the meeting of the Academic Council of

the PhD School of Computer Science.

2017

Moscow, 2017

The syllabus must not be used by other departments of the university and other

educational institution without permission of the department of the syllabus author.

1 The aim of the course 2

“Fundamentals of Knowledge Representation”

\Osnovy predstavleni� znani$i"

Course Overview

1 The aim of the course

Nowadays the knowledge representation systems are dealing with the rep-
resentation the information in a form that a computer can utilize to provide
an efficient human-computer interaction.

The aim of this advanced course is to introduce the students to the most
successful logic based concepts, tools and techniques used today in CS and
IT, which are behind a major breakthrough in the theoretical and practical
applications in knowledge representation systems.

In this course we address the following issues which are proven to be of
great theoretical and practical potential in CS and IT.
(a) Knowledge representation and reasoning in a static context.

Here predicate logic serves as a universal symbolic language to express
the basic constructs such as variables, properties, relations, quantifiers,
inference rules of a universal nature, etc.

(b) Knowledge representation and reasoning in a dynamic context.

For transition systems in AI and CS, here we use a language provided
by Hoare triples to specify the dynamic correlation between their inputs
and outputs, their preconditions and postconditions.

(c) Knowledge representation: Tractable solutions to generally intractable

problems.

Notwithstanding that pure predicate logic is generally undecidable, we
will discuss efficient algorithms to sort out certain problems of theoretical
and practical interest.

This course is new . The course has been designed in accordance with the
most recent trends in knowledge representation.
The challenge has been twofold:

2 Prerequisite, Reading Material 3

(1) to select the material and design the course so that to make it meet the
actual needs of the CS and AI applications, and

(2) to do that so that to allow the students to learn and digest all necessary
ideas to efficiently accommodate modern trends in knowledge represen-
tation.

This course is based on many years of the author’s teaching experience
in related subjects at the University of Pennsylvania and Queen Mary, Uni-
versity of London.

The course will be delivered in English, with “subtitles” in Russian, if
necessary, in order

(a) to provide better understanding for the native-speaking people, and, at
the same time,

(b) to guarantee a quicker adaptation to the international terminology, lit-
erature, the most innovative cutting edge techniques, etc., and

(c) to be prepared to understand / develop / use the most advanced auto-
mated tools in CS and IT.

2 Prerequisite, Reading Material

A decent knowledge of logic and math is needed.
In fact, the course is self-contained - all basic concepts will be introduced

step-by-step in class.
The pace of the course is driven not only by the syllabus but by the

lecturer-students interaction.

Recommended Reading:
M.Huth and M.Ryan. Logic In Computer Science. Cambridge University

Press.
The following can be recommended to provide the additional advanced

information.
(1) Novikov P.S. �lementy matematiqesko$i logiki. 2-oe izd. M.: Nauka,

1973

(2) George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computabil-
ity and logic. Fourth edition. Cambridge University Press, Cambridge,
2002.

3 Assessment 4

(3) Nikola$i Verewagin, AleksandrXen~. �zyki i isqisleni�, MCNMO,

2012 g.

(4) Nipkow, T., Grumberg, O., and Hauptmann, B., eds. Software Safety
and Security: Tools for Analysis and Verification. Amsterdam, NLD:
IOS Press, 2012.

(5) Hoare, C. A. R. (October 1969). An axiomatic basis for computer pro-
gramming. Communications of the ACM 12 (10): 576-580.
doi:10.1145/363235.363259.

(6) John C. Reynolds (2009). Theory of Programming Languages. Cam-
bridge University Press.

(7) Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman and co.,
New York, 1979.

(8) Carla P. Gomes, Henry Kautz, Ashish Sabharwal, Bart Selman (2008).
“Satisfiability Solvers.” In Frank Van Harmelen, Vladimir Lifschitz,
Bruce Porter. Handbook of knowledge representation. Foundations of
Artificial Intelligence 3. Elsevier. pp. 89-134.
doi:10.1016/S1574-6526(07)03002-7

Since the course is intended to follow the most recent achievements, there
is no textbook which would serve the course in full extent.

Therefore, the standard structure of the course is ”lectures + tests”. The
model solutions will be discussed in class and posted on the Web. Students
are strongly encouraged to take part in these discussions.

On top of that, the handouts will be regularly updated to meet students’
requests.

As a result, each of the students will collect the whole supporting pack-
age including handouts, practice problems, model answers to the practice
problems and midterms, etc.

3 Assessment

(i) Two mid-term tests worth 40% of the course marks.

(ii) Final exam worth 60% of the course marks.

4 Learning outcomes 5

4 Learning outcomes

The content is deliberately planned around the concept of learning out-
comes or objectives. So that a student can garner some understanding of
what the course should allow them to learn and that they should check (in
a whatever way seems appropriate) after studying that material that they
have achieved and can demonstrate those outcomes.
• Understand the aim of the course.

• Get a big picture on the materials to be covered by the course.

• Learn syntax and semantics of predicate logic with ensuring its orientation
to the actual needs of computer science and information technology.

• Understand how predicate logic detects difference between finite and infi-
nite.

• Understand why predicate logic cannot detect difference between enumer-
able and non-enumerable.

• Prove or disprove predicate formulas by means of the unfolded tree anal-
ysis, a kind of a theorem prover

• Prove soundness and completeness for some finite system of inference rules.

• Simulate computations within predicate logic.

• Decidable procedures for propositional logic.

• Decidable procedures for pure monadic predicate logic.

• Specify programs formally using Hoare triples

• Manually run symbolic execution rules for loop-free programs

• Use symbolic execution rules to prove loop-free programs semi-automatically

• Understand the definition of loop invariants

• Write loop invariants for simple arithmetic programs

• Prove simple arithmetic programs using loop invariants

• Understand symbolic execution for loops

• Understand an algorithm for inferring loop invariants automatically

• Apply the algorithm for simple arithmetic programs

• Understand SAT solvers

5 Outline 6

• Understand the DPLL algorithm:

• Apply Conflict-Driven Clause Learning as an efficient tool for SAT solving
in practice.

5 Outline

(1) Topic 1: Formal systems. Syntax and semantics.

(2) Topic 2: Predicate logic as a specification language for AI and
CS.

Learning outcomes :
Discuss several subtle examples of encoding problems into predicate logic.
Discuss the importance of distinguishing syntax and semantics.
Formally describe the syntax of predicate logic.
Formally define the domain of interpretation of predicate logic (universe
and interpretation of symbols).
Informally describe the semantics of predicate logic formulas, including
connectives and quantifiers.

(3) Topic 3: Models. Semantics of predicate logic. Finite and infi-
nite models.

Learning outcomes :
Recap on the formal syntax of predicate logic.
Bound and free variables.
Formal semantics of predicate logic.
Validity, satisifiability, etc.
Brief introduction to reasoning about predicate logic formulas.

(4) Topic 4: Automatized provers for predicate logic: Soundness
and completeness.

Learning outcomes :
The unfolded tree analysis in predicate logic.
A finite system of inference rules. Soundness and completeness. Bound
and free variables.

(5) Topic 5: Predicate logic: Undecidability. Decidable fragments.

Learning outcomes :
Simulation Turing/Minsky machines within predicate logic.

5 Outline 7

Decidable procedures for propositional logic.
Decidable procedures for pure monadic predicate logic.

(6) Topic 6: Hoare triples as a language to specify the dynamic
behaviour of programs/plans in AI and CS.

Learning outcomes :
Introduction to Hoare logic as the foundation of many successful tech-
niques for formal verification of software.
Provide intuition about program correctness through examples of pro-
gram specifications in Hoare logic.
Formally define the syntax and semantics of Hoare triples.
Distinguish between the notion of partial and total correctness.
The importance of auxiliary variables.
Use Hoare Triples to specify simple program in the While programming
language.

(7) Topic 7: Hoare logic. Inference rules. Soundness and Complete-
ness. Automatized Inference of Loop Invariants.

Learning outcomes :
Formally define inference rules of Hoare logic for reasoning about partial
program correctness.
Explain the connection between forwards and backwards axiom for as-
signment and weakest preconditions for assignment.
Explain how reasoning about predicate logic formulas is used for verify-
ing programs using Hoare Logic.
Apply the Hoare Logic inference rules to prove (or disprove) correctness
of loop free programs.
Use loop invariants to prove correctness of programs with loops.
Discuss the difference between inference rules for partial and total cor-
rectness.
Discuss extensions of Hoare Logic to support other programming lan-
guage features, such as pointers .
Classic (single-path) symbolic execution.
Recap: Syntax and semantics of while programs.
Proving Hoare triples of programs using forward symbolic execution.
Understand an algorithm for generating loop invariants automatically.

5 Outline 8

(8) Topic 8: SAT Solvers. Symbolic model checking. Horn clauses
and functional dependencies in relational databases. The DPLL
algorithm and its improvements.

Learning outcomes :
What is SAT.
Polynomial-time algorithms in the case of Horn clauses and functional
dependencies in relational databases.
Normal forms for general case.
Tseitin transformation.
Understand the DPLL algorithm:

unit propagation,
pure literal elimination.

Conflict-Driven Clause Learning as an efficient tool for solving the Boolean
satisfiability problem in practice.

6 Schedule 9

6 Schedule

N Topic Total In class Self-study
Lectures Seminars

1 Formal systems. Syntax
and semantics.

19 2 2 15

2 Predicate logic as a lan-
guage for CS

19 2 2 15

3 Models. Semantics of
predicate logic.

19 2 2 15

4 Automatized provers for
predicate logic.

19 2 2 15

5 Predicate logic: Undecid-
ability. Decidable frag-
ments.

19 2 2 15

6 Hoare triples as a lan-
guage within a dynamic
context.

19 2 2 15

7 Hoare Logic. Inference
Rules.

19 2 2 15

8 SAT solvers. Complexity
issues.

19 2 2 15

Total 152 16 16 120

