
Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

PROGRAM SYNTHESIS WITH NOISE
V. Raychev, Learning from Large Codebases, 2016

Anna Sokolova

January 24, 2018

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Programming by example (PBE)

Programming by example (PBE)

The user provides a number of examples the program should
satisfy (the desired output for a given input) instead of directly
providing a program.

Key problem:
Most of the PBE techniques can not adequately deal with incorrect
examples as they attempt to satisfy all given examples, thus
overfitting to the data. So, if the user makes a mistake while
providing the examples, wrong program is produced.

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Programming by example (PBE)

Noise free synthesis

Counter-example guided inductive synthesis (CEGIS)):
A small set of examples d ⊆ D is selected, s.t. synthesizing on d
generates the desired program.
Data: A large dataset D of examples
Result: Program p
initialization: random d ⊂ D;
Generate program p for d ;
while a program p satisfies not all examples in D do

Add examples that are not satisfied by the last generated
program p to d ;

Generate new candidate program p for current set d .
end

Algorithm 1: Noise-free Synthesis

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Programming by example (PBE)

Quantifying noise

Two cases for quantifying the noise in the dataset:

Bounded noise. The optimality guarantees on the learned
program are provided.

Arbitrary noise. The learning algorithm is approached with a
fast, scalable algorithm for performing approximate empirical
risk minimization (ERM).

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Problem formulation

Let D be a set of examples and P be the set of all possible
programs. The dataset D may contain errors, i.e. examples which
the program should not satisfy.
The objective is to discover a program in P which satisfies the
examples in D.
Let P(D) be the set of all the finite subsets of dataset D,
r : P(D)× P→ R be a cost (or risk) function that given a dataset
and a program, returns a non-negative real value that determines
the inferiority of the program on the dataset.

Formal problem statement:
The synthesis problem is to find the program with the lowest cost
on the entire dataset:

pbest = arg min
p∈P

r (D, p)

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Challenges:

Dataset D may be prohibitively large, or simply infinite and
thus, pbest can not be learned directly.

To show that a program p is optimal, we should rank it with
respect to all possible programs in P.

Thus, the problem is mitigated.

Relaxed problem statement:
The synthesis problem is to find the satisfactory program p≈best

with the cost close to the cost of the best program pbest or is
better than a given noise bound.

r(D, p≈best) < r (D, pbest) + ε

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Algorithm
Reduction of search space
Hard Dataset Sampler
Representative Dataset Sampler

Iterative synthesis algorithm

The algorithm consists of two separated components: a program
generator and dataset sampler, linked together in a feedback loop.

Program generator is a function gen : P(D)→ P defined as
follows:

gen(d) = arg min
p∈P

r(d , p).

Since the invocations to gen(d) are assumed to be expensive,
the dataset d should be as small as possible.

Dataset sampler is a function ds : P(P)× N→ P(D):

ds(progs, n) = d ′ with |d ′| > n

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Algorithm
Reduction of search space
Hard Dataset Sampler
Representative Dataset Sampler

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Algorithm
Reduction of search space
Hard Dataset Sampler
Representative Dataset Sampler

Synthesis with noise

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Algorithm
Reduction of search space
Hard Dataset Sampler
Representative Dataset Sampler

Reduction of search space

The size of dataset d increases at every step, while the goal is to
discover a good program using only a small dataset d . So, it is
very important to carefully pick small datasets the trim the space
of possible programs.

Noise-free search space pruning. The program generated
at step i is different from the previously generated programs:

gen(di) /∈ {pj}i−1j=1

Pruning search space with noise. A generated program p is
kept in the candidate program space if it is within some
distance ε of pbest :

r(D, p) 6 r(D, pbest) + ε.

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Algorithm
Reduction of search space
Hard Dataset Sampler
Representative Dataset Sampler

Space pruning

Figure: Search space pruning without noise (a) and with noise (b).

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Algorithm
Reduction of search space
Hard Dataset Sampler
Representative Dataset Sampler

A hard dataset sampler is a function dsH such that for
Q ⊆ P, d ′ = dsH(Q,min size), it holds that
∀p ∈ Q r(D, p) 6 r(d ′, p) and |d ′| > min size.
Hard dataset sampler always exists (we can take d ′ = D).

This definition generalizes the concept of providing more examples
in CEGIS (noise-free synthesis). If there is an unsatisfied example
x in D, it is included in d ′. Since SEGIS does not handle noise,
r(d , p) returns 0 if the program p satisfies all examples in d and 1,
otherwise. Hence, it is a hard dataset sampler.

Theorem

Let Q = {p1, . . . , pi−1} be the set of programs generated up to
iteration i of Algorithm 2, where the dataset sampler ds is hard.
If ε > r(di , pbest)− r(D, pbest), then pi = gen(di) /∈ Q ′ where:

Q ′ = {p ∈ Q|r(D, p) > r(D, pbest) + ε}

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Algorithm
Reduction of search space
Hard Dataset Sampler
Representative Dataset Sampler

Theorem

Let Q = {p1, . . . , pi−1} be the set of programs generated up to
iteration i of Algorithm 2, where the dataset sampler ds is hard.
If ε > r(di , pbest)− r(D, pbest), then pi = gen(di) /∈ Q ′ where:

Q ′ = {p ∈ Q|r(D, p) > r(D, pbest) + ε}

Proof.

Let p ∈ Q ′. Then r(D, p) > r(D, pbest) + ε.
From the definition of ε: ε+ r(D, pbest) > r(di , pbest), hence,
r(D, p) > r(di , pbest).
di = dsH(Q,) ⇒ r(di , p) > r(D, p).
From the last two statements follows that r(di , p) > r(di , pbest).
But pi = gen(di) = arg minp′∈P r(di , pbest), thus, pi 6= p and
pi /∈ Q ′.

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Algorithm
Reduction of search space
Hard Dataset Sampler
Representative Dataset Sampler

Representative Dataset Sampler

Representativeness measure

repr(Q,D, d) = max
p∈Q
|r(D, p)− r(d , p)|

Representative dataset sampler

dsR(Q, size) = arg min
d⊆D,|d |=size

repr(Q,D, d)

If d ′ = dsR(Q, size) is such that repr(Q,D, d ′) = 0 then the
produced dataset is perfectly representative. In this case dsR is
also a hard dataset sampler, because ∀p ∈ Q r(D, p) = r(d ′, p).
Intuition of the requirement: If the example is incorrect, it will
likely behave similarly on all programs. Thus, if we find small ε on
several already explored programs, a similar bound may be true for
all programs and for pbest .

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Algorithm
Reduction of search space
Hard Dataset Sampler
Representative Dataset Sampler

Theorem

Let Q = {p1, . . . , pi−1} be the set of programs generated up to
iteration i of Algorithm 2. Let pk = arg minp′∈Q r(D, p′) be the
best program explored so far. By definition, pk ∈ Q. Let
δ = repr(Q,D, di) be the representativeness measure of di and di
is obtained from a representative dataset sampler as
di ← dsR(Q, size). Then pi = gen(di) /∈ Q ′ where

Q ′ = {p ∈ Q|r(D, p) > r(D, pk) + 2δ}

Note, that the set Q ′ has the same shape as in Theorem for hard
sampler except that we consider pk(best program so far) instead of
pbest(best program globally), and 2δ instead of ε.

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Algorithm
Reduction of search space
Hard Dataset Sampler
Representative Dataset Sampler

Theorem

Let Q = {p1, . . . , pi−1}, pk = arg minp′∈Q r(D, p′),
δ = repr(Q,D, di) and di = dsR(Q, size). Then pi = gen(di) /∈ Q ′

where: Q ′ = {p ∈ Q|r(D, p) > r(D, pk) + 2δ}

Proof.

Let p ∈ Q ′. Since Q ′ ⊆ Q and δ = repr(Q,D, di), we get
|r(di , p)− r(D, p)| 6 δ, and hence, r(D, p) 6 r(di , p) + δ.
Similarly, pk ∈ Q, thus, r(di , pk) 6 r(D, pk) + δ.
pk = arg minp′∈Q r(D, p′) and p ∈ Q ⇒ r(D, pk) < r(D, p).
Then, we obtain that:

r(di , pk) 6 r(D, pk) + δ < r(D, p) + δ 6 r(di , p) + 2δ

Finally, r(di , pk) < r(di , p) ⇒ p 6= arg minp′∈Pr(di ,p′) and as a
result p 6= pi = gen(di).

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Cost Functions

We have defined the synthesis problem to minimize the cost of a
program p on a dataset d . Concrete cost functions:

num errors(d , p) returns the number of errors a program p
does on a dataset of examples d .

error rate(d , p) = num errors(d ,p)
|d | is the fraction of the

examples with an error.

Other measures weight the errors done by the program p on
the dataset d according to their kind (e.g., entropy is one
possible such measure.)

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Introduction
Problem formulation

Iterative synthesis algorithm
Cost Function and Regularization

Regularization

For a cost metric r , its regularized version

rreg (d , p) = r(d , p) + λ · Ω(p).

The regularizer Ω(p) aims to penalize programs which are too
complex and prevent overfitting to the data.
The regularizer does not have access to dataset d , but only to
given program p.

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

	Introduction
	Programming by example (PBE)

	Problem formulation
	Iterative synthesis algorithm
	Algorithm
	Reduction of search space
	Hard Dataset Sampler
	Representative Dataset Sampler

	Cost Function and Regularization

