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Programming by example (PBE)

The user provides a number of examples the program should
satisfy (the desired output for a given input) instead of directly
providing a program.

Key problem:
Most of the PBE techniques can not adequately deal with incorrect
examples as they attempt to satisfy all given examples, thus
overfitting to the data. So, if the user makes a mistake while
providing the examples, wrong program is produced.
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Noise free synthesis

Counter-example guided inductive synthesis (CEGIS)):
A small set of examples d ⊆ D is selected, s.t. synthesizing on d
generates the desired program.
Data: A large dataset D of examples
Result: Program p
initialization: random d ⊂ D;
Generate program p for d ;
while a program p satisfies not all examples in D do

Add examples that are not satisfied by the last generated
program p to d ;

Generate new candidate program p for current set d .
end

Algorithm 1: Noise-free Synthesis
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Quantifying noise

Two cases for quantifying the noise in the dataset:

Bounded noise. The optimality guarantees on the learned
program are provided.

Arbitrary noise. The learning algorithm is approached with a
fast, scalable algorithm for performing approximate empirical
risk minimization (ERM).
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Problem formulation

Let D be a set of examples and P be the set of all possible
programs. The dataset D may contain errors, i.e. examples which
the program should not satisfy.
The objective is to discover a program in P which satisfies the
examples in D.
Let P(D) be the set of all the finite subsets of dataset D,
r : P(D)× P→ R be a cost (or risk) function that given a dataset
and a program, returns a non-negative real value that determines
the inferiority of the program on the dataset.

Formal problem statement:
The synthesis problem is to find the program with the lowest cost
on the entire dataset:

pbest = arg min
p∈P

r (D, p)
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Challenges:

Dataset D may be prohibitively large, or simply infinite and
thus, pbest can not be learned directly.

To show that a program p is optimal, we should rank it with
respect to all possible programs in P.

Thus, the problem is mitigated.

Relaxed problem statement:
The synthesis problem is to find the satisfactory program p≈best

with the cost close to the cost of the best program pbest or is
better than a given noise bound.

r(D, p≈best) < r (D, pbest) + ε
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Iterative synthesis algorithm

The algorithm consists of two separated components: a program
generator and dataset sampler, linked together in a feedback loop.

Program generator is a function gen : P(D)→ P defined as
follows:

gen(d) = arg min
p∈P

r(d , p).

Since the invocations to gen(d) are assumed to be expensive,
the dataset d should be as small as possible.

Dataset sampler is a function ds : P(P)× N→ P(D):

ds(progs, n) = d ′ with |d ′| > n
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Synthesis with noise
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Reduction of search space

The size of dataset d increases at every step, while the goal is to
discover a good program using only a small dataset d . So, it is
very important to carefully pick small datasets the trim the space
of possible programs.

Noise-free search space pruning. The program generated
at step i is different from the previously generated programs:

gen(di ) /∈ {pj}i−1j=1

Pruning search space with noise. A generated program p is
kept in the candidate program space if it is within some
distance ε of pbest :

r(D, p) 6 r(D, pbest) + ε.
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Space pruning

Figure: Search space pruning without noise (a) and with noise (b).
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A hard dataset sampler is a function dsH such that for
Q ⊆ P, d ′ = dsH(Q,min size), it holds that
∀p ∈ Q r(D, p) 6 r(d ′, p) and |d ′| > min size.
Hard dataset sampler always exists (we can take d ′ = D).

This definition generalizes the concept of providing more examples
in CEGIS (noise-free synthesis). If there is an unsatisfied example
x in D, it is included in d ′. Since SEGIS does not handle noise,
r(d , p) returns 0 if the program p satisfies all examples in d and 1,
otherwise. Hence, it is a hard dataset sampler.

Theorem

Let Q = {p1, . . . , pi−1} be the set of programs generated up to
iteration i of Algorithm 2, where the dataset sampler ds is hard.
If ε > r(di , pbest)− r(D, pbest), then pi = gen(di ) /∈ Q ′ where:

Q ′ = {p ∈ Q|r(D, p) > r(D, pbest) + ε}
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Theorem

Let Q = {p1, . . . , pi−1} be the set of programs generated up to
iteration i of Algorithm 2, where the dataset sampler ds is hard.
If ε > r(di , pbest)− r(D, pbest), then pi = gen(di ) /∈ Q ′ where:

Q ′ = {p ∈ Q|r(D, p) > r(D, pbest) + ε}

Proof.

Let p ∈ Q ′. Then r(D, p) > r(D, pbest) + ε.
From the definition of ε: ε+ r(D, pbest) > r(di , pbest), hence,
r(D, p) > r(di , pbest).
di = dsH(Q, ) ⇒ r(di , p) > r(D, p).
From the last two statements follows that r(di , p) > r(di , pbest).
But pi = gen(di ) = arg minp′∈P r(di , pbest), thus, pi 6= p and
pi /∈ Q ′.
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Representative Dataset Sampler

Representativeness measure

repr(Q,D, d) = max
p∈Q
|r(D, p)− r(d , p)|

Representative dataset sampler

dsR(Q, size) = arg min
d⊆D,|d |=size

repr(Q,D, d)

If d ′ = dsR(Q, size) is such that repr(Q,D, d ′) = 0 then the
produced dataset is perfectly representative. In this case dsR is
also a hard dataset sampler, because ∀p ∈ Q r(D, p) = r(d ′, p).
Intuition of the requirement: If the example is incorrect, it will
likely behave similarly on all programs. Thus, if we find small ε on
several already explored programs, a similar bound may be true for
all programs and for pbest .
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Theorem

Let Q = {p1, . . . , pi−1} be the set of programs generated up to
iteration i of Algorithm 2. Let pk = arg minp′∈Q r(D, p′) be the
best program explored so far. By definition, pk ∈ Q. Let
δ = repr(Q,D, di ) be the representativeness measure of di and di
is obtained from a representative dataset sampler as
di ← dsR(Q, size). Then pi = gen(di ) /∈ Q ′ where

Q ′ = {p ∈ Q|r(D, p) > r(D, pk) + 2δ}

Note, that the set Q ′ has the same shape as in Theorem for hard
sampler except that we consider pk(best program so far) instead of
pbest(best program globally), and 2δ instead of ε.
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Theorem

Let Q = {p1, . . . , pi−1}, pk = arg minp′∈Q r(D, p′),
δ = repr(Q,D, di ) and di = dsR(Q, size). Then pi = gen(di ) /∈ Q ′

where: Q ′ = {p ∈ Q|r(D, p) > r(D, pk) + 2δ}

Proof.

Let p ∈ Q ′. Since Q ′ ⊆ Q and δ = repr(Q,D, di ), we get
|r(di , p)− r(D, p)| 6 δ, and hence, r(D, p) 6 r(di , p) + δ.
Similarly, pk ∈ Q, thus, r(di , pk) 6 r(D, pk) + δ.
pk = arg minp′∈Q r(D, p′) and p ∈ Q ⇒ r(D, pk) < r(D, p).
Then, we obtain that:

r(di , pk) 6 r(D, pk) + δ < r(D, p) + δ 6 r(di , p) + 2δ

Finally, r(di , pk) < r(di , p) ⇒ p 6= arg minp′∈Pr(di ,p′) and as a
result p 6= pi = gen(di ).
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Cost Functions

We have defined the synthesis problem to minimize the cost of a
program p on a dataset d . Concrete cost functions:

num errors(d , p) returns the number of errors a program p
does on a dataset of examples d .

error rate(d , p) = num errors(d ,p)
|d | is the fraction of the

examples with an error.

Other measures weight the errors done by the program p on
the dataset d according to their kind (e.g., entropy is one
possible such measure.)
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Regularization

For a cost metric r , its regularized version

rreg (d , p) = r(d , p) + λ · Ω(p).

The regularizer Ω(p) aims to penalize programs which are too
complex and prevent overfitting to the data.
The regularizer does not have access to dataset d , but only to
given program p.
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