PROGRAM SYNTHESIS WITH NOISE V. Raychev, Learning from Large Codebases, 2016

Anna Sokolova

January 24, 2018

Anna Sokolova PROGRAM SYNTHESIS WITH NOISE

Programming by example (PBE)

The user provides a number of examples the program should satisfy (the desired output for a given input) instead of directly providing a program.

Key problem:

Most of the PBE techniques can not adequately deal with incorrect examples as they attempt to satisfy *all* given examples, thus overfitting to the data. So, if the user makes a mistake while providing the examples, wrong program is produced.

Noise free synthesis

Counter-example guided inductive synthesis (CEGIS)):

A small set of examples $d \subseteq D$ is selected, s.t. synthesizing on d generates the desired program.

Data: A large dataset \mathcal{D} of examples

Result: Program p

initialization: random $d \subset \mathcal{D}$;

Generate program p for d;

while a program p satisfies not all examples in \mathcal{D} do

Add examples that are not satisfied by the last generated program p to d;

Generate new candidate program p for current set d.

end

Algorithm 1: Noise-free Synthesis

Programming by example (PBE)

Quantifying noise

Two cases for quantifying the noise in the dataset:

- Bounded noise. The optimality guarantees on the learned program are provided.
- Arbitrary noise. The learning algorithm is approached with a fast, scalable algorithm for performing approximate empirical risk minimization (ERM).

Problem formulation

Let \mathcal{D} be a set of examples and \mathbb{P} be the set of all possible programs. The dataset \mathcal{D} may contain errors, i.e. examples which the program should not satisfy.

The **objective** is to discover a program in \mathbb{P} which satisfies the examples in \mathcal{D} .

Let $\mathcal{P}(\mathcal{D})$ be the set of all the finite subsets of dataset \mathcal{D} ,

 $r: \mathcal{P}(\mathcal{D}) \times \mathbb{P} \to \mathbb{R}$ be a cost (or risk) function that given a dataset and a program, returns a non-negative real value that determines the inferiority of the program on the dataset.

Formal problem statement:

The synthesis problem is to find the program with the lowest cost on the entire dataset:

$$p_{best} = \arg\min_{p \in \mathbb{P}} r(\mathcal{D}, p)$$

Challenges:

- Dataset \mathcal{D} may be prohibitively large, or simply infinite and thus, p_{best} can not be learned directly.
- To show that a program *p* is optimal, we should rank it with respect to *all* possible programs in \mathbb{P} .

Thus, the problem is mitigated.

Relaxed problem statement:

The synthesis problem is to find the *satisfactory* program $p^{\approx best}$ with the cost close to the cost of the best program p_{best} or is better than a given noise bound.

$$r(\mathcal{D}, p^{pprox best}) < r(\mathcal{D}, p_{best}) + \varepsilon$$

Algorithm Reduction of search space Hard Dataset Sampler Representative Dataset Sampler

Iterative synthesis algorithm

The algorithm consists of two separated components: a *program* generator and dataset sampler, linked together in a feedback loop.

• **Program generator** is a function $gen : \mathcal{P}(\mathcal{D}) \to \mathbb{P}$ defined as follows:

$$gen(d) = \arg\min_{p\in\mathbb{P}} r(d,p).$$

Since the invocations to gen(d) are assumed to be expensive, the dataset d should be as small as possible.

• Dataset sampler is a function $ds : \mathcal{P}(\mathbb{P}) \times \mathbb{N} \to \mathcal{P}(\mathcal{D})$:

$$ds(progs, n) = d'$$
 with $|d'| \ge n$

Algorithm Reduction of search space Hard Dataset Sampler Representative Dataset Sampler

Input: Dataset \mathcal{D} , initial (e.g. random) dataset $\emptyset \subset d_1 \subseteq \mathcal{D}$ **Output**: Program *p* **begin**

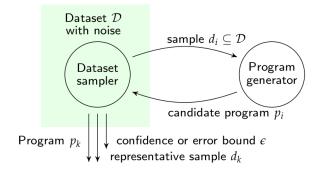
```
1 begin
      progs \leftarrow \emptyset
 2
      i \leftarrow 0
 3
      repeat
 4
          i \leftarrow i + 1
 5
          // Dataset sampling step
 6
          if i > 1 then
 7
             d_i \leftarrow ds(progs, |d_{i-1}| + 1)
 8
          end
 9
          // Program generation step
10
          p_i \leftarrow gen(d_i)
11
          if found_program(p_i) then
12
             return p_i
13
          end
14
          progs \leftarrow progs \cup \{p_i\}
15
       until d_i = \mathcal{D};
16
       return "No such program exists"
17
18 end
```

Algorithm 2: Program Synthesis with Noise

≣≯

Algorithm Reduction of search space Hard Dataset Sampler Representative Dataset Sample

Synthesis with noise



□ > < = > <

Algorithm Reduction of search space Hard Dataset Sampler Representative Dataset Sampler

Reduction of search space

The size of dataset d increases at every step, while the goal is to discover a good program using only a small dataset d. So, it is very important to carefully pick small datasets the trim the space of possible programs.

• Noise-free search space pruning. The program generated at step *i* is different from the previously generated programs:

$$gen(d_i) \notin \{p_j\}_{j=1}^{i-1}$$

 Pruning search space with noise. A generated program p is kept in the candidate program space if it is within some distance ε of p_{best}:

$$r(\mathcal{D}, p) \leqslant r(\mathcal{D}, p_{best}) + \varepsilon.$$

Algorithm Reduction of search space Hard Dataset Sampler Representative Dataset Sampler

Space pruning

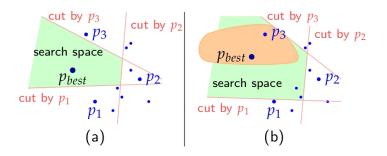


Figure: Search space pruning without noise (a) and with noise (b).

Algorithm Reduction of search space Hard Dataset Sampler Representative Dataset Sampler

A hard dataset sampler is a function ds^H such that for $Q \subseteq \mathbb{P}$, $d' = ds^H(Q, min_size)$, it holds that $\forall p \in Q \ r(\mathcal{D}, p) \leq r(d', p)$ and $|d'| \geq min_size$. Hard dataset sampler always exists (we can take $d' = \mathcal{D}$).

This definition generalizes the concept of providing more examples in CEGIS (noise-free synthesis). If there is an unsatisfied example x in \mathcal{D} , it is included in d'. Since SEGIS does not handle noise, r(d, p) returns 0 if the program p satisfies all examples in d and 1, otherwise. Hence, it is a hard dataset sampler.

Theorem

Let $Q = \{p_1, ..., p_{i-1}\}$ be the set of programs generated up to iteration *i* of Algorithm 2, where the dataset sampler ds is hard. If $\varepsilon \ge r(d_i, p_{best}) - r(\mathcal{D}, p_{best})$, then $p_i = gen(d_i) \notin Q'$ where:

$$Q' = \{ p \in Q | r(\mathcal{D}, p) > r(\mathcal{D}, p_{best}) + \varepsilon \}$$

Algorithm Reduction of search space Hard Dataset Sampler Representative Dataset Sampler

Theorem

Let $Q = \{p_1, ..., p_{i-1}\}$ be the set of programs generated up to iteration *i* of Algorithm 2, where the dataset sampler ds is hard. If $\varepsilon \ge r(d_i, p_{best}) - r(\mathcal{D}, p_{best})$, then $p_i = gen(d_i) \notin Q'$ where:

$$Q' = \{ p \in Q | r(\mathcal{D}, p) > r(\mathcal{D}, p_{best}) + \varepsilon \}$$

Proof.

Let
$$p \in Q'$$
. Then $r(\mathcal{D}, p) > r(\mathcal{D}, p_{best}) + \varepsilon$.
From the definition of ε : $\varepsilon + r(\mathcal{D}, p_{best}) \ge r(d_i, p_{best})$, hence,
 $r(\mathcal{D}, p) > r(d_i, p_{best})$.
 $d_i = ds^H(Q, _) \implies r(d_i, p) \ge r(\mathcal{D}, p)$.
From the last two statements follows that $r(d_i, p) > r(d_i, p_{best})$.
But $p_i = gen(d_i) = \arg \min_{p' \in \mathbb{P}} r(d_i, p_{best})$, thus, $p_i \ne p$ and
 $p_i \notin Q'$.

Algorithm Reduction of search space Hard Dataset Sampler Representative Dataset Sampler

Representative Dataset Sampler

Representativeness measure

$$repr(Q, \mathcal{D}, d) = \max_{p \in Q} |r(\mathcal{D}, p) - r(d, p)|$$

Representative dataset sampler

$$ds^{R}(Q, size) = \arg\min_{\substack{d \subseteq \mathcal{D}, |d| = size}} repr(Q, \mathcal{D}, d)$$

If $d' = ds^R(Q, size)$ is such that repr(Q, D, d') = 0 then the produced dataset is *perfectly representative*. In this case ds^R is also a hard dataset sampler, because $\forall p \in Q \ r(D, p) = r(d', p)$. **Intuition of the requirement**: If the example is incorrect, it will likely behave similarly on all programs. Thus, if we find small ε on several already explored programs, a similar bound may be true for all programs and for p_{best} .

Algorithm Reduction of search space Hard Dataset Sampler Representative Dataset Sampler

Theorem

Let $Q = \{p_1, \ldots, p_{i-1}\}$ be the set of programs generated up to iteration *i* of Algorithm 2. Let $p_k = \arg \min_{p' \in Q} r(\mathcal{D}, p')$ be the best program explored so far. By definition, $p_k \in Q$. Let $\delta = \operatorname{repr}(Q, \mathcal{D}, d_i)$ be the representativeness measure of d_i and d_i is obtained from a representative dataset sampler as $d_i \leftarrow ds^R(Q, size)$. Then $p_i = \operatorname{gen}(d_i) \notin Q'$ where $Q' = \{p \in Q | r(\mathcal{D}, p) > r(\mathcal{D}, p_k) + 2\delta\}$

Note, that the set Q' has the same shape as in Theorem for hard sampler except that we consider p_k (best program so far) instead of p_{best} (best program globally), and 2δ instead of ε .

(4月) イヨト イヨト

Algorithm Reduction of search space Hard Dataset Sampler Representative Dataset Sampler

Theorem

Let
$$Q = \{p_1, \ldots, p_{i-1}\}$$
, $p_k = \arg \min_{p' \in Q} r(\mathcal{D}, p')$,
 $\delta = \operatorname{repr}(Q, \mathcal{D}, d_i)$ and $d_i = ds^R(Q, size)$. Then $p_i = \operatorname{gen}(d_i) \notin Q'$
where: $Q' = \{p \in Q | r(\mathcal{D}, p) > r(\mathcal{D}, p_k) + 2\delta\}$

Proof.

Let $p \in Q'$. Since $Q' \subseteq Q$ and $\delta = repr(Q, D, d_i)$, we get $|r(d_i, p) - r(D, p)| \leq \delta$, and hence, $r(D, p) \leq r(d_i, p) + \delta$. Similarly, $p_k \in Q$, thus, $r(d_i, p_k) \leq r(D, p_k) + \delta$. $p_k = \arg \min_{p' \in Q} r(D, p')$ and $p \in Q \implies r(D, p_k) < r(D, p)$. Then, we obtain that:

$$r(d_i, p_k) \leq r(\mathcal{D}, p_k) + \delta < r(\mathcal{D}, p) + \delta \leq r(d_i, p) + 2\delta$$

Finally, $r(d_i, p_k) < r(d_i, p) \Rightarrow p \neq \arg \min_{p' \in \mathbb{P}r(d_i, p')}$ and as a result $p \neq p_i = gen(d_i)$.

Cost Functions

We have defined the synthesis problem to minimize the cost of a program p on a dataset d. Concrete cost functions:

- num_errors(d, p) returns the number of errors a program p does on a dataset of examples d.
- $error_rate(d, p) = \frac{num_errors(d, p)}{|d|}$ is the fraction of the examples with an error.
- Other measures weight the errors done by the program *p* on the dataset *d* according to their kind (e.g., entropy is one possible such measure.)

Regularization

For a cost metric r, its regularized version

$$r_{reg}(d,p) = r(d,p) + \lambda \cdot \Omega(p).$$

The regularizer $\Omega(p)$ aims to penalize programs which are too complex and prevent overfitting to the data.

The regularizer does not have access to dataset d, but only to given program p.