
GENERATIVE MODELS
FOR API COMPLETION
Chapter 3
Raychev V. Learning from Large Codebases, 2016

Doctoral School of Computer Science

Moscow, 2018

Fedin Gennadii

CONTENT
1. The Problem
2. The architecture

2.1 Abstraction
2.2 Language Models

2.2.1 N-gram
2.2.2 RNN

2.3 Training
2.4 Synthesis

3. Implementation
4. Results
5. Conclusion

Doctoral School of Computer Science

2

CONTENT
1. The Problem
2. The architecture

2.1 Abstraction
2.2 Language Models

2.2.1 N-gram
2.2.2 RNN

2.3 Training
2.4 Synthesis

3. Implementation
4. Results
5. Conclusion

Doctoral School of Computer Science

3

THE PROBLEM
API completion

Doctoral School of Computer Science

4

• Sequences of unknown length
• Ranked list of solutions
• Learning from a corpus where the actual completion positions (holes) are not

available at learning time

THE PROBLEM
Solution

Doctoral School of Computer Science

5

Input (partial program) Output (completion)

• Completion across multiple types
• Completion of parameters

• Holes as sequences
• New fused completions

CONTENT
1. The Problem
2. The architecture

2.1 Abstraction
2.2 Language Models

2.2.1 N-gram
2.2.2 RNN

2.3 Training
2.4 Synthesis

3. Implementation
4. Results
5. Conclusion

Doctoral School of Computer Science

6

Doctoral School of Computer Science

7

THE ARCHITECTURE
Slang software

CONTENT
1. The Problem
2. The architecture

2.1 Abstraction
2.2 Language Models

2.2.1 N-gram
2.2.2 RNN

2.3 Training
2.4 Synthesis

3. Implementation
4. Results
5. Conclusion

Doctoral School of Computer Science

8

ABSTRACTION
Semantic intermediate representation

State notations

Doctoral School of Computer Science

9

! – an	object,
!-./012∗ - an unbounded set of
dynamically allocated objects,
456782 - a set of local variable identifiers,
9:/;878 - a set of field identifiers,
<∗ - a set of allocated objects,

=∗ ∈ 45; = !-./012∗ ∪ AB;; ,
C∗ ∈ DA= = 456782 → 45;,
F∗ ∈ G/5C = !-./012∗×9:/;878 → 45;,
< <∗, C∗, F∗ > - concrete state,

ABSTRACTION
Semantic intermediate representation

History notations

Doctoral School of Computer Science

10

Σ" - all events over the API #,
ℋ - set of all sequences of events from Σ"
ℎ&'∗ ∶ *∗ → ℋ, changes on object
allocations and method invocations,
< *∗, .∗, /∗, ℎ&'∗ >→
< *∗1, .∗1, /∗1, ℎ&'∗1 >,

2(45, … , 47) – a method signature,
. – “position” of object in the invocation (0
for 4ℎ&', 1, : for position 1 to :, ;<4 for
new object),
<=<>4 =	< 2 45, … , 47 , . >,
– API with methods 25,… ,2A,

ABSTRACTION
Abstract Semantics

Heap

Doctoral School of Computer Science

11

!∗ ∈ $%&' =)*+%,-.∗×01%2343 → 6&2,
)*+%,-.∗ →)*+%,-. - bounded set of abstract objects

History

ℎ ⊂ ℋ - set of concrete histories of bounded length

CONTENT
1. The Problem
2. The architecture

2.1 Abstraction
2.2 Language Models

2.2.1 N-gram
2.2.2 RNN

2.3 Training
2.4 Synthesis

3. Implementation
4. Results
5. Conclusion

Doctoral School of Computer Science

12

LANGUAGE MODELS
General information

Notation

Doctoral School of Computer Science

13

! – dictionary,
" ∈ ! – word,
$ = "& ⋅ "(⋅ … ⋅ "*- sentence, an
ordered sequence of words,
+ – language, all sentences used in some
particular domain,
ℎ- = "& ⋅ "(⋅ … ⋅ "- - history,
Pr	($) – probability of sentence $.

To build a probabilistic distribution over all
possible sentences in a language.

For instance as:

Pr $ =3Pr "-|ℎ-5&
6

-7&

Goal

LANGUAGE MODELS
N-gram

Trigram language model (the probability of a word depends on a pair of
previous words)

Doctoral School of Computer Science

14

Pr # =%Pr &'|&')*+, ⋅ … ⋅ &'),
/

'0,

Pr # =%Pr &'|&')1 ⋅ &'),
/

'0,

The probabilities are estimated by counting the number of occurrences of trigrams
and bi-grams in the training data

Witten-Bell backoff smoothing
Unseen events as ones not having happened yet, the probability can be modeled by

the probability of seeing it for the first time

LANGUAGE MODELS
RNN (recurrent neural networks)

Notations

Doctoral School of Computer Science

15

!" ∈ $ % ,
&" ∈ $ % ,
' - the size of the hidden layer,
(" ∈ $),

(" = +(!", ("./),
&" = 1(("),
Pr 4"5/|4/ ⋅ … ⋅ 4" ≈ &:;<=" .

Prediction

CONTENT
1. The Problem
2. The architecture

2.1 Abstraction
2.2 Language Models

2.2.1 N-gram
2.2.2 RNN

2.3 Training
2.4 Synthesis

3. Implementation
4. Results
5. Conclusion

Doctoral School of Computer Science

16

TRAINING
Training the language models

Doctoral School of Computer Science

17

3.5GHz Core i7 2700K, 16GB RAM, a solid state drive storage, 64-bit
Ubuntu 12.04, OpenJDK 1.7

CONTENT
1. The Problem
2. The architecture

2.1 Abstraction
2.2 Language Models

2.2.1 N-gram
2.2.2 RNN

2.3 Training
2.4 Synthesis

3. Implementation
4. Results
5. Conclusion

Doctoral School of Computer Science

18

SYNTHESIS
Query phase

Specifying holes

Doctoral School of Computer Science

19

? "#$%&: ": (

Specifying holes
1. Extract abstract histories with

holes,
2. Compute candidate

completions,
3. Compute an optimum and

consistent solution

CONTENT
1. The Problem
2. The architecture

2.1 Abstraction
2.2 Language Models

2.2.1 N-gram
2.2.2 RNN

2.3 Training
2.4 Synthesis

3. Implementation
4. Results
5. Conclusion

Doctoral School of Computer Science

20

IMPLEMENTATION
Details

Doctoral School of Computer Science

21

• The number of loop iterations L=2

• Sequences with more than K=16 words (invocations) are not considered

• Words that occur less than a certain number of times in the training corpus are
replaced with placeholder unknown words

• The probability of a constant value as a parameter of a method is estimated by
the number of times each constant was given as a parameter to the method in
the training data

Data
• 3,090,194 Android methods were used as training data
• Sources were compiled using a specially modified version of the partial compiler
• Compiled programs were converted into bytecode
• Bytecode was fed as training data into Slang

CONTENT
1. The Problem
2. The architecture

2.1 Abstraction
2.2 Language Models

2.2.1 N-gram
2.2.2 RNN

2.3 Training
2.4 Synthesis

3. Implementation
4. Results
5. Conclusion

Doctoral School of Computer Science

22

RESULTS
Evaluation of the software

Doctoral School of Computer Science

23

Task 1. Single object single-method completion (20 tasks)
Task 2. General completion (14 code snippets)
Task 3. Random completion (50 methods, 23 with multiple holes)

CONTENT
1. The Problem
2. The architecture

2.1 Abstraction
2.2 Language Models

2.2.1 N-gram
2.2.2 RNN

2.3 Training
2.4 Synthesis

3. Implementation
4. Results
5. Conclusion

Doctoral School of Computer Science

24

CONCLUSION
GENERATIVE MODELS FOR API COMPLETION

Doctoral School of Computer Science

25

• A new approach for creating probabilistic models of code was presented

• A link between statistical models for code and statistical models for natural
languages was established

• A tool for code completion “Slang” was implemented

• An experimental evaluation of this tool was proposed

26

