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THE PROBLEM
API completion
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• Sequences of unknown length
• Ranked list of solutions
• Learning from a corpus where the actual completion positions (holes) are not 

available at learning time



THE PROBLEM
Solution
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Input (partial program) Output (completion)

• Completion across multiple types
• Completion of parameters

• Holes as sequences
• New fused completions
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THE ARCHITECTURE
Slang software
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ABSTRACTION
Semantic intermediate representation

State notations
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! – an	object,
!-./012∗ - an unbounded set of 
dynamically allocated objects,
456782 - a set of local variable identifiers,
9:/;878 - a set of field identifiers,
<∗ - a set of allocated objects,

=∗ ∈ 45; = !-./012∗ ∪ AB;; ,
C∗ ∈ DA= = 456782 → 45;,
F∗ ∈ G/5C = !-./012∗×9:/;878 → 45;,
< <∗, C∗, F∗ > - concrete state,



ABSTRACTION
Semantic intermediate representation

History notations
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Σ" - all events over the API #,
ℋ - set of all sequences of events from Σ"
ℎ&'∗ ∶ *∗ → ℋ, changes on object 
allocations and method invocations,
< *∗, .∗, /∗, ℎ&'∗ >→
< *∗1, .∗1, /∗1, ℎ&'∗1 >,

2(45, … , 47) – a method signature,
. – “position” of object in the invocation (0 
for 4ℎ&', 1, : for position 1 to :, ;<4 for 
new object),
<=<>4 =	< 2 45, … , 47 , . >,
# – API with methods 25,… ,2A,



ABSTRACTION
Abstract Semantics

Heap
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!∗ ∈ $%&' = )*+%,-.∗×01%2343 → 6&2,
)*+%,-.∗ → )*+%,-. - bounded set of abstract objects

History

ℎ ⊂ ℋ - set of concrete histories of bounded length
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LANGUAGE MODELS
General information

Notation
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! – dictionary,
" ∈ ! – word,
$ = "& ⋅ "( ⋅ … ⋅ "*- sentence, an 
ordered sequence of words,
+ – language, all sentences used in some 
particular domain,
ℎ- = "& ⋅ "( ⋅ … ⋅ "- - history,
Pr	($) – probability of sentence $.

To build a probabilistic distribution over all 
possible sentences in a language.

For instance as:

Pr $ =3Pr "-|ℎ-5&
6

-7&

Goal



LANGUAGE MODELS
N-gram

Trigram language model (the probability of a word depends on a pair of 
previous words)
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Pr # =%Pr &'|&')*+, ⋅ … ⋅ &'),
/

'0,

Pr # =%Pr &'|&')1 ⋅ &'),
/

'0,

The probabilities are estimated by counting the number of occurrences of trigrams 
and bi-grams in the training data

Witten-Bell backoff smoothing
Unseen events as ones not having happened yet, the probability can be modeled by 

the probability of seeing it for the first time 



LANGUAGE MODELS
RNN (recurrent neural networks)

Notations
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!" ∈ $ % ,
&" ∈ $ % ,
' - the size of the hidden layer,
(" ∈ $),

(" = +(!", ("./),
&" = 1(("),
Pr 4"5/|4/ ⋅ … ⋅ 4" ≈ &:;<=" .

Prediction
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TRAINING
Training the language models
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3.5GHz Core i7 2700K, 16GB RAM, a solid state drive storage, 64-bit 
Ubuntu 12.04, OpenJDK 1.7
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SYNTHESIS
Query phase

Specifying holes
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? "#$%&: ": (

Specifying holes
1. Extract abstract histories with 

holes,
2. Compute candidate 

completions,
3. Compute an optimum and 

consistent solution
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IMPLEMENTATION
Details
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• The number of loop iterations L=2

• Sequences with more than K=16 words (invocations) are not considered

• Words that occur less than a certain number of times in the training corpus are 
replaced with placeholder unknown words

• The probability of a constant value as a parameter of a method is estimated by 
the number of times each constant was given as a parameter to the method in 
the training data

Data
• 3,090,194 Android methods were used as training data
• Sources were compiled using a specially modified version of the partial compiler
• Compiled programs were converted into bytecode
• Bytecode was fed as training data into Slang
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RESULTS
Evaluation of the software
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Task 1. Single object single-method completion (20 tasks)
Task 2. General completion (14 code snippets)
Task 3. Random completion (50 methods, 23 with multiple holes)



CONTENT
1. The Problem
2. The architecture

2.1 Abstraction
2.2 Language Models

2.2.1 N-gram
2.2.2 RNN

2.3 Training
2.4 Synthesis

3. Implementation
4. Results
5. Conclusion

Doctoral School of Computer Science

24



CONCLUSION
GENERATIVE MODELS FOR API COMPLETION
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• A new approach for creating probabilistic models of code was presented

• A link between statistical models for code and statistical models for natural 
languages was established

• A tool for code completion “Slang” was implemented

• An experimental evaluation of this tool was proposed
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