LEARNING FROM LARGE CODEBASES

Program synthesis with noise Part 2: the case of bounded noise and implementation

> Author: Veselin Raychev Presented by Tatiana Makhalova

> > January 24, 2018

Program Synthesis with Noise (ALG)

```
Input: Dataset \mathcal{D}, initial (e.g. random) dataset \emptyset \subset d_1 \subseteq \mathcal{D}
    Output: Program p
 1 begin
      progs \leftarrow \emptyset
 2
      i \leftarrow 0
 3
       repeat
 4
          i \leftarrow i + 1
 5
          // Dataset sampling step
 6
          if i > 1 then
 7
           | d_i \leftarrow ds(progs, |d_{i-1}| + 1)
 8
           end
 9
           // Program generation step
10
          p_i \leftarrow gen(d_i)
11
          if found_program(p<sub>i</sub>) then
12
              return p_i
13
          end
14
          progs \leftarrow progs \cup \{p_i\}
15
       until d_i = \mathcal{D};
16
       return "No such program exists"
17
18 end
```

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Basic Info

Definition (HDS)

A hard dataset sampler is a function ds^H such that for $Q \subseteq P$, $d' = ds^H(Q, min_size)$, it holds that $\forall p \in Q.r(\mathcal{D}, p) \leq r(d', p)$ and $|d'| \geq min_size$.

Theorem (THM)

Let $Q = \{p_1, ..., p_{i-1}\}$ be the set of programs generated up to iteration *i* of Algorithm ALG, where the dataset sampler ds satisfies Definition HDS. If $\varepsilon \ge r(d_i, p_{best}) - r(\mathcal{D}, p_{best})$, then $p_i = gen(d_i) \notin Q'$, where

$$Q' = \{ p \in Q \mid r(\mathcal{D}, p) > r(\mathcal{D}, p_{best}) + \varepsilon \}.$$

Noise Bound

Definition (NB)

We say that ε_k is a **noise bound** for samples of size k if for the program p_{best} : $\forall d \subseteq \mathcal{D}. |d| = k \Longrightarrow \varepsilon_k \ge r(d, p_{best}) - r(\mathcal{D}, p_{best})$, where r is a risk function (e.g. error rate, the number of error etc.)

Remark: We can easily instantiate THM by setting $\varepsilon = \varepsilon_k$ (see the precondition of THM " $\varepsilon \ge r(d_i, p_{best}) - r(\mathcal{D}, p_{best})$ ").

Program Synthesis with Noise (ALG)

Termination criterion

Input: Dataset \mathcal{D} , initial (e.g. random) dataset $\emptyset \subset d_1 \subseteq \mathcal{D}$ **Output**: Program p

1 begin

2	$progs \leftarrow \emptyset$
3	$i \leftarrow 0$
4	repeat
5	$i \leftarrow i+1$
6	// Dataset sampling step
7	if $i > 1$ then
8	$ d_i \leftarrow ds(progs, d_{i-1} + 1)$
9	end
10	// Program generation step
11	$p_i \leftarrow gen(d_i)$
12	if found_program (p_i) then
13	return p_i
14	end
15	$progs \leftarrow progs \cup \{p_i\}$
16	until $d_i = \mathcal{D}$;
17	return "No such program exists"
, 18	end

Termination criteria

We limit the error rate for a satisfactory program

$$r(\mathcal{D}, p_{\mathsf{satisfactory}}) \leq r(\mathcal{D}, p_{\mathsf{best}}) + \varepsilon_{\mathsf{satisfactory}}.$$

The stopping criteria has a form:

$$found_program(p_i) \triangleq (p_i \in progs) \land \varepsilon_{|d_i|} \le \varepsilon_{satisfactory}$$

By Definition NB $r(d, p_{best}) - r(D, p_{best}) \le \varepsilon_{|d_i|}$ (that is the precondition of THM), thus $p_i = gen(d_i) \notin Q'$, where $Q' = \{p \in progs \mid r(D, p) > r(D, p_{best}) + \varepsilon_{|d_i|}\}$. Since all the members of Q satisfies THM (due to the noise bound), if $p_i \in progs$ it satisfies the following condition:

$$r(\mathcal{D}, p_i) \leq r(\mathcal{D}, p_{best}) + \varepsilon_i.$$

Termination criterion

Special case: bound on the number of errors

Let us assume that p_{best} makes at most K errors on D. Consider following the cost function

$$r_{K}(d, p) = min(num_errors(d, p), K + 1).$$

By Definition NB, $\varepsilon_k = 0$. By setting $\varepsilon_{satisfactory} = 0$ we get the following sopping criteria:

found_program
$$(p_i) \triangleq (p_i \in progs).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thus, the Algorithm ALG terminates with p_{best} .

BitSyn: bitstream programs from noisy data

Scenarios to consider:

- 1. the dataset \mathcal{D} is obtained dynamically and the noise is bounded (i.e., up to K errors);
- 2. the dataset \mathcal{D} is present in advance and may contain an unknown number of errors.

Goal: synthesize a program having input/output examples (32-bit integers).

Key feature: a generated program may not satisfy all provided input/output examples.

Key components of BitSyn

Objective. Tackle with overfitting problem

Regularization with function $\Omega(p_a) : \mathbb{P} \to \mathbb{R}^+$ that outputs the number of the used instructions.

Regularized objective:

$$r_{reg}(d, p) = \operatorname{error_rate}(d, p) + \lambda \cdot \Omega(p),$$

where $\lambda \in \mathbb{R}$ is a regularization constant.

Example

Given data:

 $\textit{d}_{1} = \left\{ \left\{ 2 \rightarrow 3 \right\}, \left\{ 5 \rightarrow 6 \right\}, \left\{ 10 \rightarrow 11 \right\}, \left\{ 15 \rightarrow 16 \right\}, \left\{ -2 \rightarrow 0 \right\} \right\}$

True function: $p_a = \text{return}$ input + 1, satisfies all the examples except for $\{-2 \rightarrow 0\}$.

Learned function: $p_a = \text{return input} + 1 + (\text{input} >> 7).$

+	2	0000 0010	+	15	0000 1111	+	-2	1111 1110
+	1	0000 0001	+	1	0000 0001	+	1	0000 0001
= -	$2 \gg 7$	0000 0000	_	$15 \gg 7$	0000 0000	_	$-2 \gg 7$	0000 0001
	3	0000 0011		16	0001 0000	_	0	0000 0000

Key components of BitSyn Z3 SMT Solver

Satisfiability Modulo Theories (SMT) problem is a decision problem for logical first order formulas with respect to combinations of background theories such as: arithmetic, bit-vectors, arrays, and uninterpreted functions. **Example**¹

¹Alberto Griggio; the materials of the SAT/SMT summer school 2014 $= 9 \circ 0$

Key components of BitSyn Z3 SMT Solver. Scheme

Figure: The scheme of Z3 SMT Solver, see more details on http://research.microsoft.com/projects/z3

Data Format

Input for SML solver:

- Encoded set of input/output examples $d = \{x_i\}_{i=1}^n {}^2$
- ▶ Number of allowed errors T, the solution must satisfy formula $T \ge \sum_{i=1}^{n} [$ if χ_i then 0 else 1]

The program looks for the best scoring solution by iterating over the lengths of programs and T.

²Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Ti- wari. Oracle-guided Component-based Program Synthesis. In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1. ICSE 10. Cape Town, South Africa: ACM, 2010, pp. 215224. url: http://doi.acm.org/ 10.1145/1806799.1806833 (cit. on pp. 1, 101, 104, 108, 115, 116, 118, 119, 121).

Case 1: Examples in D are provided dynamically

Questions to answer

- How many errors can be processed to synthesize a correct solution?
- How many (more) examples does BitSyn need in order to compensate for the incorrect examples?

Case 1: Examples in D are provided dynamically $_{\mbox{\scriptsize Results}}$

		Number of errors (K)										
	0	1	2	3	4	5	6	7	8	9		
Progra	Number of input/output examples needed											
P1	2	4	4	10	7	9	11	14	16	17	22	
P2	2	5	6	6	7	11	12	15	19	20	22	
P3	3	4	4	9	10	8	13	15	16	17	21	
P4	2	2	4	7	8	9	10	13	15	17	19	
P5	2	3	3	9	9	10	10	14	16	20	22	
P6	2	4	5	10	9	10	11	13	17	20	22	
P7	3	5	5	7	9	11	12	15	19	20	22	
P8	3	5	5	10	10	8	12	13	16	20	19	
P9	9 3		3 timeout									
	Number of	Number of errors (K)										
	instructions	0	1		2	3		4	5		9	
Program	m ↓	Synthesis time (seconds)										
P1	2	1.11	1.1	7 :	1.98	1.51	1.51 1.80		7.33 102.7		2.76	
P2	2	1.21	1.4	8 3	1.79	2.70	2.45		12.96	72.37		
P3	3	1.75	1.8	1 4	4.42	8.63	9.20		40.62	156.09		
P4	2	1.05	1.1	9 :	1.56	3.07	4.01		11.34	1	12.30	
P5	2 1.08 1.10		0 3	1.84	3.45	9	.38	11.64	13	9.75		
P6	2	1.18	1.5	1 2	2.70	3.50	10	.60	12.44	9	1.49	
P7	3	1.80	2.2	0 2	2.77	5.15	12	.65	21.62	11	7.16	
P8	3	1.90	2.4	4 4	4.41	4.47	5	.15	26.62	4	1.46	
P9	3	2.58	timeo	ut ti	meout	timeout	tim	eout	timeout	t	imeout	

Case 2: All examples in D are given in advance

Questions to answer

Are the unsatisfied examples exactly the incorrect ones?

Remark: in the experiments the generated programs are not available before the process of anomaly detection starts. The found unsatisfied examples is assumed to be outliers.

Case 2: All examples in D are given in advance Results

Figure: Ability of BitSyn to detect an incorrect example for programs (P1-P9) depending on total number of examples and regularization constant λ .

The results show that we need a dataset with more than 10 examples and a regularization constant between 0.05 and 0.1.

Related work

Boolean program synthesis

- synthesis from examples;
- partial programs;

one part of a program is given imperatively and the other is given declaratively (e.g. conditions need to be achieved or maintained).

synchronization.

All these approaches attempt to satisfy **all** provided examples and constraints.

Quantitative program synthesis

 Goal is to synthesize a program satisfying weaker specification and maximizing some quantitative objective

Summary

- A program synthesis approach that can deal with incorrect examples;
- Returns an optimal (or almost optimal) program and terminates early in case of the known bound on the cost function for the best program.
- Some suboptimal candidate programs are removed from the search space if the bound is unknown.

Thank you for your attention!