LEARNING FROM LARGE CODEBASES

Program synthesis with noise
Part 2: the case of bounded noise and implementation

Author: Veselin Raychev
Presented by Tatiana Makhalova

January 24, 2018

Program Synthesis with Noise (ALG)

Input: Dataset D, initial (e.g. random) dataset @ C d; C D
Output: Program p

1 begin

2 | progs < @

3 i< 0

4 | repeat

5 i1+—i+1

6 // Dataset sampling step

7 if i > 1 then

8 | d; < ds(progs, |di_1| +1)
9 end

10 // Program generation step

11 pi < gen (d,)

12 if found_program(p;) then

13 | return p;

14 end

15 progs <« progs U {p;}

16 | untild; = D;

17 | return “No such program exists”

18 end

Basic Info

Definition (HDS)

A hard dataset sampler is a function ds" such that for Q C P,
d' = ds"(Q, min_size), it holds that ¥p € Q.r(D,p) < r(d’, p)
and |d’| > min_size.

Theorem (THM)

Let Q = {p1,..., pi—1} be the set of programs generated up to
iteration i of Algorithm ALG, where the dataset sampler ds satisfies
Definition HDS. If € > r(d;, ppest) — r(D, Ppest), then

pi = gen(d;) ¢ Q', where

Q’ = {pe Q | r(D,p) > r(Dypbest)+€}'

Noise Bound

Definition (NB)

We say that ¢, is a noise bound for samples of size k if for the
program Ppest- Vd C D|d| =k = ¢, 2> r(d) pbest) - r(D’ pbest),
where r is a risk function (e.g. error rate, the number of error etc.)

Remark: We can easily instantiate THM by setting ¢ = ¢4 (see
the preconndition of THM " > r(d;, ppest) — r(D, ppest)")-

Program Synthesis with Noise (ALG)

Termination criterion
Input: Dataset D, initial (e.g. random) dataset @ C d; C D
Output: Program p

1 begin

2 | progs < @

3 i+ 0

4 | repeat

5 1+—i+1

6 // Dataset sampling step

7 if i > 1 then

8 | di < ds(progs, |di_1| +1)
9 end

10 // Program generation step

11 pi < gen(d;)

12 if found_program(p;) then

13 | return p;

14 end

15 progs « progs U {p;}

16 | untild; = D;

17 | return “No such program exists”

18 end

Termination criteria

We limit the error rate for a satisfactory program

r(D, psatisfactory) < r(D, pbest) + Esatisfactory -

The stopping criteria has a form:

found,program(p,-) = (Pi € progs) N €\dj| < Esatisfactory

By Definition NB r(d7 pbest) - r(D7 pbest) < €ld;| (that is the
precondition of THM), thus p; = gen(d;) ¢ Q', where

Q = {p € progs | r(D, p) > r(D, ppest) + 5|d;\}' Since all the
members of Q satisfies THM (due to the noise bound), if

pi € progs it satisfies the following condition:

r(D; pi) < r(D; Ppest) + €i-

Termination criterion

Special case: bound on the number of errors

Let us assume that ppess makes at most K errors on D. Consider
following the cost function
rk(d, p) = min(num_errors(d, p), K + 1).
By Definition NB, £, = 0. By setting €satisfactory = 0 we get the
following sopping criteria:
found_program(p;) = (p; € progs).
Thus, the Algorithm ALG terminates with ppes;.

BitSyn: bitstream programs from noisy data

Scenarios to consider:

1. the dataset D is obtained dynamically and the noise is
bounded (i.e., up to K errors);

2. the dataset D is present in advance and may contain an
unknown number of errors.

Goal: synthesize a program having input/output examples (32-bit
integers).

Key feature: a generated program may not satisfy all provided
input/output examples.

Key components of BitSyn

Objective. Tackle with overfitting problem

Regularization with function Q(p,) : P — R™ that outputs the
number of the used instructions.

Regularized objective:

rreg(d, p) = error_rate(d, p) + A - Q(p),

where A € R is a regularization constant.

Example

Given data:
di={{2—3},{6 - 6},{10 —» 11},{15 — 16} ,{—2 — 0}}

True function: p, = return input + 1, satisfies all the examples
except for {—2 — 0}.

+ 2 0000 0010 + 15 0000 1111 + -2 1111 1110
_ 1 0000 0001 _ 1 0000 0001 _ 1 0000 0001
- 3 0000 0011 - 16 0001 0000 - -1 1111 1111

Learned function: p, = return input + 1 + (input >> 7).

+ 2 0000 0010 + 15 0000 1111 + -2 1111 1110
+ 1 0000 0001 + 1 0000 0001 + 1 0000 0001
_ 2>7 0000 0000 _ 15>7 0000 0000 _ 2>7 0000 0001
- 3 0000 0011 - 16 0001 0000 - 0 0000 0000

Key components of BitSyn
Z3 SMT Solver

Satisfiability Modulo Theories (SMT) problem is a decision
problem for logical first order formulas with respect to
combinations of background theories such as: arithmetic,
bit-vectors, arrays, and uninterpreted functions.

Example !

o Z(x) > 0) A (z1 < D]
[((f(xl) 7]‘(0 J (rd{wr(P, x2,x3)}[gg2 + 561]) :[x3 T 13

Linear Integer %
Arithmetic (LIA)
Equality (EUF) Arrays (A)

Alberto Griggio; the materials of the SAT/SMT summer:school 2014

Key components of BitSyn
Z3 SMT Solver. Scheme

‘ SMT-LIB ‘ [Simplify | ‘ Native text‘ [C | ‘ NET
‘ Simplifier | Theory Solvers
l l Linear arithmetic
‘ Compiler |
l ‘ Bit-vectors
Congruence closure core
equalities ‘ Arrays
assignments
new atoms [Tuples
literal assignments
equalities
SAT solver E-matching engine
clauses

Figure: The scheme of Z3 SMT Solver, see more details on
http://research.microsoft.com/projects/z3

http://research.microsoft.com/projects/z3

Data Format

Input for SML solver:

» Encoded set of input/output examples d = {x;}/_; 2

» Number of allowed errors T, the solution must satisfy formula
T > 377 [if xi then 0 else 1]

The program looks for the best scoring solution by iterating over
the lengths of programs and T.

2Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Ti- wari.
Oracle-guided Component-based Program Synthesis. In: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume 1.
ICSE 10. Cape Town, South Africa: ACM, 2010, pp. 215224. url:
http://doi.acm.org/ 10.1145/1806799.1806833 (cit. on pp. 1, 101, 104, 108,
115, 116, 118, 119, 121).

Case 1: Examples in D are provided dynamically

Questions to answer

» How many errors can be processed to synthesize a correct
solution?

» How many (more) examples does BitSyn need in order to
compensate for the incorrect examples?

Case 1: Examples in D are provided dynamically

Results

Number of
instructions

Number of errors (K)
0o 1 2 3 4 5 6 7 8 9

Program v | Number of input/output examples needed
P1 2 4 4 10 7 9 11 14 16 17 22
P2 2 5 6 6 7 11 12 15 19 20 22
P3 3 4 4 9 10 8 13 15 16 17 21
P4 2 2 4 7 8 9 10 13 15 17 19
P5 2 3 3 9 9 10 10 14 16 20 22
P6 2 4 5 10 9 10 11 13 17 20 22
P7 3 5 5 7 9 11 12 15 19 20 22
P8 3 5 5 10 10 8 12 13 16 20 19
P9 3 3

Number of Number of errors (K)

instructions | 0 1 2 3 4 5 | 9
Program ¥ | Synthesis time (seconds)
P1 2 111 117 198 151 1.80 7.33 | 102.76
P2 2 1.21 148 179 270 245 1296 7237
P3 3 175 181 442 863 920 4062 | 156.09
P4 2 1.05 119 156 3.07 401 1134 12.30
P5 2 1.08 110 184 345 938 11.64 | 139.75
P6 2 118 151 270 350 10.60 1244 | 91.49
P7 3 1.80 220 277 515 1265 2162 | 117.16
P8 3 190 244 441 447 5.15 26.62 41.46
P9 3 258 timeout timeout timeout timeout timeout timeout

Case 2: All examples in D are given in advance

Questions to answer
» Are the unsatisfied examples exactly the incorrect ones?

Remark: in the experiments the generated programs are not
available before the process of anomaly detection starts.
The found unsatisfied examples is assumed to be outliers.

Case 2: All examples in D are given in advance

Results

0.22
0.16
A
0.1
0.04

1 4 7 10 13 16 19 22 25 28
Total number of input/output examples

1 No example removed (overfitting to incorrect example)
Ry Some correct examples removed (too simple program)

[J Noisy example correctly detected

Figure: Ability of BitSyn to detect an incorrect example for programs
(P1-P9) depending on total number of examples and regularization
constant .

The results show that we need a dataset with more than 10
examples and a regularization constant between 0.05 and 0.1.

Related work

Boolean program synthesis
» synthesis from examples;
> partial programs;
one part of a program is given imperatively and the other is given
declaratively (e.g. conditions need to be achieved or maintained).
» synchronization.
All these approaches attempt to satisfy all provided examples and
constraints.
Quantitative program synthesis

» Goal is to synthesize a program satisfying weaker specification
and maximizing some quantitative objective

Summary

» A program synthesis approach that can deal with incorrect
examples;

» Returns an optimal (or almost optimal) program and
terminates early in case of the known bound on the cost
function for the best program.

» Some suboptimal candidate programs are removed from the
search space if the bound is unknown.

Thank you for your attention!

