
LEARNING FROM LARGE CODEBASES
Program synthesis with noise

Part 2: the case of bounded noise and implementation

Author: Veselin Raychev
Presented by Tatiana Makhalova

January 24, 2018

Program Synthesis with Noise (ALG)

Basic Info

Definition (HDS)

A hard dataset sampler is a function dsH such that for Q ⊆ P,
d ′ = dsH(Q,min size), it holds that ∀p ∈ Q.r(D, p) ≤ r(d ′, p)
and |d ′| ≥ min size.

Theorem (THM)

Let Q = {p1, ..., pi−1} be the set of programs generated up to
iteration i of Algorithm ALG, where the dataset sampler ds satisfies
Definition HDS. If ε ≥ r(di , pbest)− r(D, pbest), then
pi = gen(di) /∈ Q ′, where

Q ′ = {p ∈ Q | r(D, p) > r(D, pbest) + ε} .

Noise Bound

Definition (NB)

We say that εk is a noise bound for samples of size k if for the
program pbest : ∀d ⊆ D.|d | = k =⇒ εk ≥ r(d , pbest)− r(D, pbest),
where r is a risk function (e.g. error rate, the number of error etc.)

Remark: We can easily instantiate THM by setting ε = εk (see
the preconndition of THM “ε ≥ r(di , pbest)− r(D, pbest)”).

Program Synthesis with Noise (ALG)
Termination criterion

Termination criteria

We limit the error rate for a satisfactory program

r(D, psatisfactory) ≤ r(D, pbest) + εsatisfactory .

The stopping criteria has a form:

found program(pi) , (pi ∈ progs) ∧ ε|di | ≤ εsatisfactory

By Definition NB r(d , pbest)− r(D, pbest) ≤ ε|di | (that is the
precondition of THM), thus pi = gen(di) /∈ Q ′, where
Q ′ =

{
p ∈ progs | r(D, p) > r(D, pbest) + ε|di |

}
. Since all the

members of Q satisfies THM (due to the noise bound), if
pi ∈ progs it satisfies the following condition:

r(D, pi) ≤ r(D, pbest) + εi .

Termination criterion
Special case: bound on the number of errors

Let us assume that pbest makes at most K errors on D. Consider
following the cost function

rK (d , p) = min(num errors(d , p),K + 1).

By Definition NB, εk = 0. By setting εsatisfactory = 0 we get the
following sopping criteria:

found program(pi) , (pi ∈ progs).

Thus, the Algorithm ALG terminates with pbest .

BitSyn: bitstream programs from noisy data

Scenarios to consider:

1. the dataset D is obtained dynamically and the noise is
bounded (i.e., up to K errors);

2. the dataset D is present in advance and may contain an
unknown number of errors.

Goal: synthesize a program having input/output examples (32-bit
integers).

Key feature: a generated program may not satisfy all provided
input/output examples.

Key components of BitSyn
Objective. Tackle with overfitting problem

Regularization with function Ω(pa) : P→ R+ that outputs the
number of the used instructions.

Regularized objective:

rreg (d , p) = error rate(d , p) + λ · Ω(p),

where λ ∈ R is a regularization constant.

Example

Given data:
d1 = {{2→ 3} , {5→ 6} , {10→ 11} , {15→ 16} , {−2→ 0}}

True function: pa = return input + 1, satisfies all the examples
except for {−2→ 0}.

+ 2 0000 0010 + 15 0000 1111 + -2 1111 1110

=
1 0000 0001

=
1 0000 0001

=
1 0000 0001

3 0000 0011 16 0001 0000 -1 1111 1111

Learned function: pa = return input + 1 + (input >> 7).

+ 2 0000 0010 + 15 0000 1111 + -2 1111 1110
+ 1 0000 0001 + 1 0000 0001 + 1 0000 0001

=
2 � 7 0000 0000

=
15 � 7 0000 0000

=
-2 � 7 0000 0001

3 0000 0011 16 0001 0000 0 0000 0000

Key components of BitSyn
Z3 SMT Solver

Satisfiability Modulo Theories (SMT) problem is a decision
problem for logical first order formulas with respect to
combinations of background theories such as: arithmetic,
bit-vectors, arrays, and uninterpreted functions.
Example 1

1Alberto Griggio; the materials of the SAT/SMT summer school 2014

Key components of BitSyn
Z3 SMT Solver. Scheme

Figure: The scheme of Z3 SMT Solver, see more details on
http://research.microsoft.com/projects/z3

http://research.microsoft.com/projects/z3

Data Format

Input for SML solver:

I Encoded set of input/output examples d = {xi}ni=1
2

I Number of allowed errors T , the solution must satisfy formula
T ≥

∑n
i=1 [if χi then 0 else 1]

The program looks for the best scoring solution by iterating over
the lengths of programs and T .

2Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Ti- wari.
Oracle-guided Component-based Program Synthesis. In: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume 1.
ICSE 10. Cape Town, South Africa: ACM, 2010, pp. 215224. url:
http://doi.acm.org/ 10.1145/1806799.1806833 (cit. on pp. 1, 101, 104, 108,
115, 116, 118, 119, 121).

Case 1: Examples in D are provided dynamically

Questions to answer

I How many errors can be processed to synthesize a correct
solution?

I How many (more) examples does BitSyn need in order to
compensate for the incorrect examples?

Case 1: Examples in D are provided dynamically
Results

Case 2: All examples in D are given in advance

Questions to answer

I Are the unsatisfied examples exactly the incorrect ones?

Remark: in the experiments the generated programs are not
available before the process of anomaly detection starts.
The found unsatisfied examples is assumed to be outliers.

Case 2: All examples in D are given in advance
Results

Figure: Ability of BitSyn to detect an incorrect example for programs
(P1-P9) depending on total number of examples and regularization
constant λ.

The results show that we need a dataset with more than 10
examples and a regularization constant between 0.05 and 0.1.

Related work

Boolean program synthesis

I synthesis from examples;

I partial programs;
one part of a program is given imperatively and the other is given

declaratively (e.g. conditions need to be achieved or maintained).

I synchronization.

All these approaches attempt to satisfy all provided examples and
constraints.
Quantitative program synthesis

I Goal is to synthesize a program satisfying weaker specification
and maximizing some quantitative objective

Summary

I A program synthesis approach that can deal with incorrect
examples;

I Returns an optimal (or almost optimal) program and
terminates early in case of the known bound on the cost
function for the best program.

I Some suboptimal candidate programs are removed from the
search space if the bound is unknown.

Thank you for your attention!

