Discriminative Models for Predicting Program Properties
(Part 1)

Raychev V. Learning from Large Codebases, 2016. Chapter 2.

Natalia Korepanova

January 10, 2018

N.Korepanova 1/27

General Scheme

Input Dependency network Predicted properties Output
program relating unknown program
with known properties
== —
— - L]
Training data Learned CRF model .
Training

Figure 2.1: Statistical Prediction of Program Properties.

Properties:
e syntactic (e.g. variable names);

e semantic (e.g. optional type annotations).
CRF = conditional random fields

N.Korepanova

2 /27

Input Program

(a) JavaScript program with minified identifier names

function chunkDatafe, t) {

var n = [];
var r = 2.length;
var i = 0;

for (; i < r; 1 += 1) {
if (1 + t < 1) {
n.push(e.substring(i, i + t));
} else {
n.push{e.substring(i, r));
¥
}

rTeturn n;

N.Korepanova

3 /27

Output Program

(e) JavaScript program with new identifier names (and type annotations)

S+ str: string, step: mumber, reiurn: Array =/

function chunkData(str, step) {
var colNames = [];
A+ colNames: Array +/
var lem = str.length;
var i = 0; /* i: mnumber =/
for (;i < lem;i += step) {
if (i + step < len) {
colNames .push(str.substring(i,
} else {
colNames .push(str.substring(i,
¥
}

return colNames;

N.Korepanova

i + stepl);

len));

4 /27

Example: Name Inference Procedure (Steps 1, 2)
function chunkDatafe, t) {

var n = [1; Unknown pmperhes
vaT T = e.length; (variable names):

for G4k 40 o 0]0]0I0)0

if (i + t <« r) { =

n.push(e.substring(i, i + t)}; Kncmnproperties

boelse { S {constants, APls):
n.push{e.substring(i, rl);

} @@ E= @
}
return n;

} N8

Fey
i+=t — (itl+=R) _:}(
var r = e.length — (r,length,L = _.R) 19
i<r — (ir,lL<R) \(\’
L<R™ _.R
* Here and further arrows in a dependency network mean the direction of relation, not the

direction of dependence. If two nodes in a relation they are dependent from each other.

N.Korepanova 5 /27

Example: Name Inference Procedure (Step 3)

L R Score
[i step
t i1
2 i3 sta)
L+=R_ ./ 1 g um
i 1
C.? | le
; e
L<B™& L=_.R L R Score \{En/. L R Score
[lem 08 | length length 0.5
i lemgth 0.6 [lan langth 04 |

Output of the training phase

Maximum a Posteriori (MAP) inference <— Maximize the sum of scores

N.Korepanova 6 /27

Notation: Programs

Let X be a set of all possible programs in some language, and x € X be a
program.

n,m: X — N, where

n(x) is the total number of elements (e.g. variables) of a program x
for which we are interested in inferring properties,

m(x) is the total number of elements with known properties of a
program x.

N.Korepanova 7/27

Notation: Labels, Properties, Predictions

Let

Labelsy denotes all possible values that a predicted property can take,
Labelsk denotes a set of values that a known property can take,

Labels = Labelsy U Labelsk denotes the set of all property values.

For a program x, the vector z¥ = {z,...,zX ,} denotes the set of
L2772 m(x)
properties that are already known, where zX € Labelsk for i = 1,..., m(x).

The notation y = (y1, ..., ¥n(x)) is used to denote a vector of predicted
program properties, where y € Y and Y = (Labelsy)* in general.

N.Korepanova 8 /27

Problem Definition

Let D = {(x(j),y(j)>}f:1 denote the training data: t programs annotated
with corresponding program properties.

Goal
Learning a model that captures the conditional probability Pr(y|x).

Prediction (MAP or Maximum a Posteriori query)

Given a new program x, find y = argmax,cq, Pr(y’|x),
where Q, C Y describes the set of possible assignments of properties y’ for
the program x.

Q, allows restricting the set of possible property assignments and is useful
for problem-specific constraints.

N.Korepanova 9 /27

Conditional Random Fields (CRFs)

A model for the conditional probability of labels y given observations x is
called (log-linear) conditional random field, if it is represented as:

Pr(y|x) = Z(lx) exp(score(y, x)),
with

e the partition function

Z(x) = Z exp(score(y, x)),

yEQx

which returns a real number depending only on the program x;

score(y, x Z wifi(y,x) = WTf(y,X),

where f is a vector of feature funct:ons f:YxX—Randwisa
vector of weights w;.

N.Korepanova

10 / 27

Making Predictions for Programs with CRFs

Step 1: Build dependency network
Step 2: Define feature functions
Step 3: Score a prediction y

N.Korepanova 11 / 27

Dependency Network

Let Rels be the set of all element relations.

A multi-graph G* = (V*, EX) is called a dependency network of the
program x if

e VX = VU V[denotes the set of program elements and consists of
elements for which we would like to predict properties Vi and
elements with known properties V5;

e the set of edges EX C VX x VX x Rels denotes the fact that there is a
relationship between two program elements and describes this
relationship.

N.Korepanova 12 / 27

Feature Functions

Let {1);}*_, be a set of pairwise feature functions s.t.
;. Labels x Labels x Rels — R scores a pair of program properties when
they are related with the given relation.

1 if h =1iand h =step and e = L+=R

0 otherwise

wexample(ll’ I27 e) = {

Let the assignment vector A = (y, z*) be a concatenation of the unknown
properties y and the known properties z* in x, and the property of the j'th
element of vector A is accessed via A;. Then the feature function!® f; is
defined as:

iy,)= D ¥i((y,2)a (v, 2)s, rel).

(a,b,rel)€ EX

feature functions are defined independently of the program being queried
N.Korepanova 13 / 27

Edges and Dependencies of Program Properties

Unknown properties Known properties
(y L z 2)
y; € Labelsy z; € Labelsg
1 :
2 Y
3 - Tl /
(ray—Y20
—y ~q 10
6 %_‘/ ‘L@
(We) 5 4 —~
R - TS .
ORI

e Predictions for node 5 can be made independently.

e All undirected paths from node 2 to node 4 go through nodes with
known properties, therefore the properties for them can be assigned
independently (conditional inference property of CRFs).

N.Korepanova 14 / 27

MAP Inference in CRFs

y = arg max Pr(y'|x)
y'eQy

)

y = arg max score(y’, x)
y'eQ

X

A naive but inefficient way to solve this query is to score all possible
y' € Q..

Other exact and inexact inference algorithms exist, but they are too slow to
be usable for programs.

N.Korepanova 15 / 27

JSNice (http://jsnice.org/)

Y 45 NICE: Statistical 1

{ 0 € L[pniceorg

J LIS STATISTICAL RENAMENG. TYPE INFERENCE AND DEDBFUSCATION ABDUT

ene swvascrier [RESULT
v Ton

" sendRequest (3,b, <) [o
TGET!, a, falieh:

1, client, mscage) |

(15 NICE | ssicn.ra | Sotwara Rofiabiy Lab, Comenr Sconen Daparimert, ETH Zurich oomee m| [

Previous Approaches to Deobfuscation
e Application of certain predefined fixes to the names.

e Probabilistic models for prediction of one identifier name in the
context of other good identifiers.

N.Korepanova 16 / 27

http://jsnice.org/

JSNice (http://jsnice.org/)

Existing Java Script Extensions Adding Optional Type Annotations
e TypeScript
e Google Closure Compiler

These extensions help discover type errors and improve code
documentation, but require manual effort.

N.Korepanova 17 / 27

http://jsnice.org/

Application 1: Probabilistic Name Prediction

Goal
Predicting the names of local variables in a given program x. J

V% = all constants, object properties, methods and global variables of the
program x.

Labelsx = JSConst U JSNames,

where JSNames is a set of all valid identifier names, and JSConst is a set
of possible constants.

V(; = all local variables of the program x.
Labelsy = JSNames.

N.Korepanova 18 / 27

Application 2: Probabilistic Type Annotation Prediction

Goal

Predicting the type annotations of functions parameters. Important for
languages lacking type annotations (e.g. JavaScript).

Simplified Language
Expression: expr ::= val | var | expri(expr2) | exprn © exprs
Value: val ::= Aval : T.expr | n

n € JSConsts,

var ranges over the program variables,

© ranges over binary operators,
T = JSTypes.

N.Korepanova 19 / 27

JSNice

Probabilistic Type Annotation Prediction

JSTypes = {?} U L, where ? stands for unknown type and L is a complete
lattice of JavaScript types.

T= An). type

// \ Otha objects:
/ e.g. RegExp,

5‘31"1118 number boolean Fu.nction Array -
Element,

1 - No l'_ﬂ)e -

JSTypes is built during training, therefore is finite.

N.Korepanova 20 / 27

Probabilistic Type Annotation Prediction

[|x : expr — JSTypes - obtaining the type of a given expression in a given
program. A shortcut for [|x(e) = [e] when program x is clear from the

context.
Vi ={e| eis var,[e] =7}
Labelsy = JSTypes
Vi ={e| eis expr,[e] A7} U{n | n € JSConsts}
Labelsix = JSTypes U JSConsts
Q, = (JSTypes)"™)

N.Korepanova 21 /27

JSNice

Relating Expressions (Syntactic Relationship)

L+R /
L?(R\ /L(R

Figure 2.5: (a) the AST of expression i+j<k, and two dependency net-
works built from the AST relations: (b) for name predictions,
and (c) for type predictions.

relyse := reli(relg) | rely © relg
relp i=Lrell(_)| (rel)) | rell® | _®rel
relr =R | relg(_) | (relg) | relr® | ©relg

*AST stands for Abstract Syntax Tree
N.Korepanova 22 /27

Aliasing Relations (Semantic Relationship)

Let alias(e) denotes the set of expressions that may alias with the
expression e.

ARG_TO_PM relationship: relates arguments of a function invocation with
parameters in the function declaration.

Transitive aliasing relationship (r, ALIAS): let a and b related via the
relationship r which ranges over the grammar defined earlier. Then for all
c € alias(b) where c is a variable, we include the edge (a, c, (r, ALIAS)).

N.Korepanova 23 /27

Function Name Relationship

(f,g,MAY_CALL): relates a function name f with names of other function
g that f may call.

(f, fld,MAY_ACCESS): relates a function name f with object fields fld to
which this function has an access.

N.Korepanova 24 /27

Obtaining Pairwise Feature Functions

t
all _features(D) = U{(y(j),zxm)a, (y(j),zxm)b, rel) | (a, b, rel) € EX(J)}
j=1

Let the all _features(D) = {(I}, I?, rel;)}*_,. Then the pairwise feature
functions are defined as:

bi(I', 12, rel) = {

1 if It = /,-1 and 2 = l,-2 and rel = rel;

0 otherwise

Next Step: Learning feature weights {w;}%_.

N.Korepanova 25 /27

N
Tractable CRF Model

The CRF model is too general to ensure practical applicability, and solving
MAP inference may be undecidable.

Additional Restrictions Used to Make the Problem Tractable

@ The predictions y is a vector of a given size n(x) known before a
prediction made.

@® Feature functions f are introduced through pairwise feature functions
that relate only pairs of properties.

© Pairwise feature functions are indicator functions in oder to enable fast
inference.

v

N.Korepanova 26 / 27

[llustration of Restriction 1

(a) Initial configuration (b) A possible candidate configuration
in the search space

o Ne
® On0)

(c) Configuration outside of the search space

N.Korepanova

27 / 27

	Predictions
	JSNice

