
Discriminative Models for Predicting Program Properties
(Part 1)

Raychev V. Learning from Large Codebases, 2016. Chapter 2.

Natalia Korepanova

January 10, 2018

N.Korepanova 1 / 27

General Scheme

Properties:

• syntactic (e.g. variable names);

• semantic (e.g. optional type annotations).

CRF = conditional random �elds

N.Korepanova 2 / 27

Input Program

N.Korepanova 3 / 27

Output Program

N.Korepanova 4 / 27

Example: Name Inference Procedure (Steps 1, 2)

i += t → 〈i , t, L+ = R〉
var r = e.length → 〈r , length, L = .R〉
i < r → 〈i , r , L < R〉

⇒

⇓

* Here and further arrows in a dependency network mean the direction of relation, not the
direction of dependence. If two nodes in a relation they are dependent from each other.

N.Korepanova 5 / 27

Example: Name Inference Procedure (Step 3)

=⇒

Output of the training phase

Maximum a Posteriori (MAP) inference ←→ Maximize the sum of scores

N.Korepanova 6 / 27

Notation: Programs

Let X be a set of all possible programs in some language, and x ∈ X be a

program.

n,m : X → N, where
n(x) is the total number of elements (e.g. variables) of a program x
for which we are interested in inferring properties,

m(x) is the total number of elements with known properties of a

program x .

N.Korepanova 7 / 27

Notation: Labels, Properties, Predictions

Let

LabelsU denotes all possible values that a predicted property can take,

LabelsK denotes a set of values that a known property can take,

Labels = LabelsU ∪ LabelsK denotes the set of all property values.

For a program x , the vector zx = {zx
1 , ..., z

x
m(x)} denotes the set of

properties that are already known, where zx
i ∈ LabelsK for i = 1, ...,m(x).

The notation y = (y1, ..., yn(x)) is used to denote a vector of predicted

program properties, where y ∈ Y and Y = (LabelsU)∗ in general.

N.Korepanova 8 / 27

Problem De�nition

Let D = {〈x (j), y (j)〉}tj=1 denote the training data: t programs annotated

with corresponding program properties.

Goal

Learning a model that captures the conditional probability Pr(y |x).

Prediction (MAP or Maximum a Posteriori query)

Given a new program x , �nd y = argmaxy ′∈Ωx Pr(y ′|x),
where Ωx ⊆ Y describes the set of possible assignments of properties y ′ for
the program x .

Ωx allows restricting the set of possible property assignments and is useful

for problem-speci�c constraints.

N.Korepanova 9 / 27

Conditional Random Fields (CRFs)

A model for the conditional probability of labels y given observations x is

called (log-linear) conditional random �eld, if it is represented as:

Pr(y |x) =
1

Z (x)
exp(score(y , x)),

with

• the partition function

Z (x) =
∑
y∈Ωx

exp(score(y , x)),

which returns a real number depending only on the program x ;
•

score(y , x) =
k∑

i=1

wi fi (y , x) = wT f (y , x),

where f is a vector of feature functions fi : Y × X → R and w is a

vector of weights wi .

N.Korepanova 10 / 27

Predictions

Making Predictions for Programs with CRFs

Step 1: Build dependency network

Step 2: De�ne feature functions

Step 3: Score a prediction y

N.Korepanova 11 / 27

Predictions

Dependency Network

Let Rels be the set of all element relations.

A multi-graph G x = 〈V x ,E x〉 is called a dependency network of the

program x if

• V x = V x
U ∪ V x

K denotes the set of program elements and consists of

elements for which we would like to predict properties V x
U and

elements with known properties V x
K ;

• the set of edges E x ⊆ V x × V x × Rels denotes the fact that there is a

relationship between two program elements and describes this

relationship.

N.Korepanova 12 / 27

Predictions

Feature Functions

Let {ψi}ki=1 be a set of pairwise feature functions s.t.
ψi : Labels × Labels × Rels → R scores a pair of program properties when

they are related with the given relation.

ψexample(l1, l2, e) =

{
1 if l1 = i and l2 = step and e = L+=R

0 otherwise

Let the assignment vector A = (y , zx) be a concatenation of the unknown

properties y and the known properties zx in x , and the property of the j 'th
element of vector A is accessed via Aj . Then the feature function1 fi is
de�ned as:

fi (y , x) =
∑

〈a,b,rel〉∈E x

ψi

(
(y , zx)a, (y , zx)b, rel

)
.

1feature functions are de�ned independently of the program being queried

N.Korepanova 13 / 27

Predictions

Edges and Dependencies of Program Properties

• Predictions for node 5 can be made independently.

• All undirected paths from node 2 to node 4 go through nodes with

known properties, therefore the properties for them can be assigned

independently (conditional inference property of CRFs).

N.Korepanova 14 / 27

Predictions

MAP Inference in CRFs

y = arg max
y ′∈Ωx

Pr(y ′|x)

m

y = arg max
y ′∈Ωx

score(y ′, x)

A naive but ine�cient way to solve this query is to score all possible

y ′ ∈ Ωx .

Other exact and inexact inference algorithms exist, but they are too slow to

be usable for programs.

N.Korepanova 15 / 27

JSNice

JSNice (http://jsnice.org/)

Previous Approaches to Deobfuscation

• Application of certain prede�ned �xes to the names.

• Probabilistic models for prediction of one identi�er name in the

context of other good identi�ers.

N.Korepanova 16 / 27

http://jsnice.org/

JSNice

JSNice (http://jsnice.org/)

Existing Java Script Extensions Adding Optional Type Annotations

• TypeScript

• Google Closure Compiler

These extensions help discover type errors and improve code

documentation, but require manual e�ort.

N.Korepanova 17 / 27

http://jsnice.org/

JSNice

Application 1: Probabilistic Name Prediction

Goal

Predicting the names of local variables in a given program x .

V x
K = all constants, object properties, methods and global variables of the

program x .
LabelsK = JSConst ∪ JSNames,
where JSNames is a set of all valid identi�er names, and JSConst is a set

of possible constants.

V x
U = all local variables of the program x .

LabelsU = JSNames.

N.Korepanova 18 / 27

JSNice

Application 2: Probabilistic Type Annotation Prediction

Goal

Predicting the type annotations of functions parameters. Important for

languages lacking type annotations (e.g. JavaScript).

Simpli�ed Language

Expression: expr ::= val | var | expr1(expr2) | expr1 � expr2

Value: val ::= λval : τ.expr | n

n ∈ JSConsts,
var ranges over the program variables,

� ranges over binary operators,

τ = JSTypes.

N.Korepanova 19 / 27

JSNice

Probabilistic Type Annotation Prediction

JSTypes = {?} ∪ L, where ? stands for unknown type and L is a complete

lattice of JavaScript types.

JSTypes is built during training, therefore is �nite.

N.Korepanova 20 / 27

JSNice

Probabilistic Type Annotation Prediction

[]x : expr → JSTypes - obtaining the type of a given expression in a given

program. A shortcut for []x(e) = [e] when program x is clear from the

context.

V x
U = {e | e is var , [e] =?}

LabelsU = JSTypes

V x
K = {e | e is expr , [e] 6=?} ∪ {n | n ∈ JSConsts}

LabelsK = JSTypes ∪ JSConsts

Ωx = (JSTypes)n(x)

N.Korepanova 21 / 27

JSNice

Relating Expressions (Syntactic Relationship)

relast ::= relL(relR) | relL � relR

relL ::= L | relL(_) | _(relL) | relL �_ | _� relL

relR ::= R | relR(_) | _(relR) | relR �_ | _� relR

*AST stands for Abstract Syntax Tree

N.Korepanova 22 / 27

JSNice

Aliasing Relations (Semantic Relationship)

Let alias(e) denotes the set of expressions that may alias with the

expression e.

ARG_TO_PM relationship: relates arguments of a function invocation with

parameters in the function declaration.

Transitive aliasing relationship (r , ALIAS): let a and b related via the

relationship r which ranges over the grammar de�ned earlier. Then for all

c ∈ alias(b) where c is a variable, we include the edge (a, c, (r , ALIAS)).

N.Korepanova 23 / 27

JSNice

Function Name Relationship

(f , g , MAY_CALL): relates a function name f with names of other function

g that f may call.

(f , fld , MAY_ACCESS): relates a function name f with object �elds fld to

which this function has an access.

N.Korepanova 24 / 27

JSNice

Obtaining Pairwise Feature Functions

all_features(D) =
t⋃

j=1

{(y (j), zx(j)
)a, (y (j), zx(j)

)b, rel) | (a, b, rel) ∈ E x(j)}

Let the all_features(D) = {〈l1i , l2i , reli 〉}ki=1. Then the pairwise feature

functions are de�ned as:

ψi (l1, l2, rel) =

{
1 if l1 = l1i and l2 = l2i and rel = reli

0 otherwise

Next Step: Learning feature weights {wi}ki=1.

N.Korepanova 25 / 27

Tractable CRF Model

The CRF model is too general to ensure practical applicability, and solving

MAP inference may be undecidable.

Additional Restrictions Used to Make the Problem Tractable

1 The predictions y is a vector of a given size n(x) known before a

prediction made.

2 Feature functions f are introduced through pairwise feature functions

that relate only pairs of properties.

3 Pairwise feature functions are indicator functions in oder to enable fast

inference.

N.Korepanova 26 / 27

Illustration of Restriction 1

N.Korepanova 27 / 27

	Predictions
	JSNice

