Learning from Large Codebases
Raychev V. Learning from Large Codebases, 2016.

Natalia Korepanova

January 10, 2018

N.Korepanova 1/13

Learning from Large Datasets

e natural language processing (Google Translate)
e computer vision (Facebook photo service)
e recommendation systems

etc.

“Big Code™
GitHub (https://github.com/),
BitBucket (https://bitbucket.org/),

and others.

However, learning from large datasets has not had great impact on
programming tools!

N.Korepanova 2 /13

https://github.com/
https://bitbucket.org/

]
Main Thesis Question

How to leverage large datasets of code to build practical
programming tools?

N.Korepanova 3/13

N
Main Goals

¢ Usability of the resulting tools (e.g. scalability and precision)
¢ Generality of the underlying techniques

N.Korepanova 4 /13

Core Research Challenges

¢ Creating a suitable probabilistic model for programs
Solution: design of program analysis that capture semantic information

Probabilistic model

0.8
) on APl sequences
0.6 computed
without

alias analysis

with
alias analysis

I
5}

Prediction accuracy
{=]
=

% of data 10% of data all data
Amount of training data

Figure 1.1: Impact of the amount of training data and probabilistic
model on the accuracy of the SLANG code completion system.

e Learning from a large corpus of training data
Solution: efficient learning procedures

N.Korepanova 5 /13

Tools Showcase

JSNICE (http://jsnice.org/)

Takes as input JavaScript code, renames its local variables and function
parameters, and outputs semantically equivalent JavaScript code, but more
human readable.

15.0K
12 0K
0.0K
6.0K
30K
0
09 R P s ok gt b bt
NI RN Vh?f@&) a&,,yvh&“\g O

Number of queries

o

Size of the JavaScript programs given by our users (in bytes)

Figure 1.3: Histogram of query sizes to http://jsnice.org/ sent by
its users in the period May 10, 2015 — May 10, 2016.

N.Korepanova 6 /13

http://jsnice.org/

Tools Showcase

SLANG
API code completion system, capable of predicting one or multiple method
invocations at once.

Activity currentactivity;

veoid test({boolean no bars) {
WebView view = new WebView|ctx);
if (no s) {

i

setVerticalScrollBarEnabled (falsel;
view.setHorizontalscrollBarenabled(false);

| . .
¥ currentactivity.setCantentView(view view) void - Activity
@ view.loadUrl{String url) : void - webview

Figure 1.4: A code completion plugin capable to predict multiple state-
ments at once.

N.Korepanova 7 /13

Tools Showcase

DEEPSYN

General technique that automatically synthesizes code completion systems
described by a domain specific language.

this.element .classMame = this.options.className;
this.element.style.width = this.options.width = “px";
this.element.style.|

@ width
Moo.lam-extnhd(ﬁf?g ?215_2‘-“ anvasElenent,
inttEvents:funct @ bottom

YAHDO.util.Ev © top element, "clic
e Myisin ity m ' e

Figure 1.5: The DEePSYN tool for completing JavaScript code. In this
snippet of code, standard type analysis cannot resolve the
types of the used variables. Our statistical model predicts
that if width was set, height may need to be set as well.

*This technique synthesized a code completion system for JavaScript that predicts
around 50% of API calls and almost 40% of field access correctly. (Good result due to
lack of static type information in JavaScript.)

N.Korepanova 8 /13

General Architecture of “Big Code” tools

N I”p'.Jt 5 Intermediate Predicted
! (partial) } — . — |
>, program representation '.III result
T \
\
\ /
. {
Program analysis)
3 Iy l,I Query I|'
o | I —
Oy
0 Og”0
. Intermediate Probabilistic
"Big Code")
repositories representation model
- =
Training data

Training
phase
N.Korepanova

9/13

Problem Dimensions

Dimensions

Instantiations in this thesis

Application

Deobfuscation (§2)
Type Prediction (82)
Code Synthesis (§3, §5)

Program analysis

Scope Analysis, Type Analysis (§2)
TypeState and Alias Analysis (§3)
Domain Specific Languages (§5)

Intermediate representation

Factor Graphs (§2)
Sequences (§3, §5)

Probabilistic model

CRE, Structured SVM (§2)
Statistical Language Models (§3, §5)

Query

MAP Inference (82, §3)

N.Korepanova

10 / 13

-
Challenges

e Vast number of labels
Trying every possible label at query time is practically infeasible.

e Dependent predictions
To predict the names of n variables, we need to consider up to n* possible
assignments if a variable name ranges over a set of size k.

e Estimating probabilities and learning
Valid probabilities need to be positive and sum to one over all possible
outcomes. With the large number of predictions and specifically the
presence of constrains it becomes intractable to even count the number of
possible predictions.

e Feature engineering
In JSNICE and SLANG tools feature functions are defined manually. The

synthesis technique behind DEEPSYN system replaces the feature
engineering process.

N.Korepanova 11 /13

-
Main Contributions (1)

e A new approach for probabilistic prediction of program properties and
the JSNICE system based on this approach. This is the first
connection of conditional random fields to the problem of learning
from programs.

e A connection of static analysis with statistical language models,
implemented in the SLANG tool and illustration of application of
recent advances in deep learning to the problem of learning from
programs.

N.Korepanova 12 /13

-
Main Contributions (2)

e A new framework for program synthesis with noise, connecting
traditional program synthesis with statistical learning, that:

@ enables existing programing-by-example engines to deal with nose,
® provides a fast procedure for empirical risk minimization in machine
learning
© serves as a basis for developing learning procedures from “Big Code”
with high precision.
e A new learning approach based on the developed framework for
program synthesis, implemented in the DEEPSYN system, which
precision significantly improves over existing approaches.

N.Korepanova 13 /13

