
LEARNING A SYNTHESIZER

WITH “BIG CODE”

Dmitry Aldunin

Doctoral School of Computer Science

Moscow, 2018

LEARNING A SYNTHESIZER WITH “BIG

CODE”

1. Previously on the show

2. Architecture variants of tools learning tools from “Big Code”

3. Terminology

4. Inductive synthesis for empirical risk minimization

5. Deepsyn: learning statistical code completion systems

Contents

Doctoral School of Computer Science

LEARNING A SYNTHESIZER WITH “BIG

CODE”

1. Previously on the show

2. Architecture variants of tools learning tools from “Big Code”

3. Terminology

4. Inductive synthesis for empirical risk minimization

5. Deepsyn: learning statistical code completion systems

Contents

Doctoral School of Computer Science

1.Previously on the show

Previously we:

• manually designed intermediate representations tailored to specific tasks and programming

languages

• motivated the need to use conditional random fields and factor graphs when developing a name or

type annotation predictors

• listed a number of features that relate program elements according to their distance in the program

abstract syntax trees

• proposed a statistical n-gram language model that parametrizes a predicted method call on the n −

1 method calls preceding the predicted position

• defined program analysis to determine and extract those sequences using program analysis

Doctoral School of Computer Science

LEARNING A SYNTHESIZER WITH “BIG

CODE”

1. Previously on the show

2. Architecture variants of tools learning tools from “Big Code”

3. Terminology

4. Inductive synthesis for empirical risk minimization

5. Deepsyn: learning statistical code completion systems

Contents

Doctoral School of Computer Science

Doctoral School of Computer Science

ARCHITECTURE VARIANTS OF TOOLS

LEARNING TOOLS FROM “BIG CODE”

(a) Learning with a manually

designed analysis

(b) Learning with synthesized

analysis.

LEARNING A SYNTHESIZER WITH “BIG

CODE”

1. Previously on the show

2. Architecture variants of tools learning tools from “Big Code”

3. Terminology

4. Inductive synthesis for empirical risk minimization

5. Deepsyn: learning statistical code completion systems

Contents

Doctoral School of Computer Science

Doctoral School of Computer Science

TERMINOLOGY FOR “BIG CODE” SYSTEMS

BASED ON PROGRAM SYNTHESIS

LEARNING A SYNTHESIZER WITH “BIG

CODE”

1. Previously on the show

2. Architecture variants of tools learning tools from “Big Code”

3. Terminology

4. Inductive synthesis for empirical risk minimization

5. Deepsyn: learning statistical code completion systems

Contents

Doctoral School of Computer Science

INDUCTIVE SYNTHESIS FOR EMPIRICAL

RISK MINIMIZATION

Doctoral School of Computer Science

We connect the program

generator and data sampler

components in an iterative loop.

In this section, we show how to

leverage Algorithm 2 from

Chapter 4 to perform fast

approximate empirical risk

minimization.

EMPIRICAL RISK MINIMIZATION

Doctoral School of Computer Science

Let 𝑙 : 𝑃 × 𝑋 → 𝑅≥0 be a function, such that 𝑙(p, x) quantifies the

loss (amount of inaccuracy) when applying program p to example x.

Our task is to synthesize a program 𝑝∗∈ P that minimizes the expected loss on example x

drawn i.i.d. (independent and identically-distributed) from distribution S.

I.e., we seek to minimize the risk (defined in terms of the expectation of the function):

i.e. find the program:

EMPIRICAL RISK MINIMIZATION

Doctoral School of Computer Science

There are two problems with computing p∗using the above approach:

• First, since S is unknown, the risk R(p) cannot even be evaluated.

• Second, even if we could evaluate it, finding the best program is

generally intractable.

EMPIRICAL RISK MINIMIZATION

Doctoral School of Computer Science

To address these concerns, we make two assumptions. First, we

assume we are given a dataset D of examples drawn i.i.d. from S.

We can approximate the risk R(p) by the empirical risk, i.e.,

Then, we assume (for now) that we have an “oracle”, an algorithm that

can solve the empirical risk minimization (ERM) problem

GUARANTEES

Doctoral School of Computer Science

For any ε, δ > 0, if our dataset of examples D is big enough with respect

to the space of programs, then it holds for the solution 𝑝𝑏𝑒𝑠𝑡 that

R(𝑝𝑏𝑒𝑠𝑡) ≤ R(𝑝∗) + ε, with probability at least 1 − δ.

Hence, the best-performing program on the dataset is close (in risk) to

the best program over all of S. This is because for all p ∈ P it holds that

|R(p) − 𝑟𝑒𝑚𝑝 (D, p)| ≤ ε.

REGULARIZATION

Doctoral School of Computer Science

ERM solution can overfit if the dataset D is not large enough. Overfitting

means that R(𝑝∗) ≪ R(𝑝𝑏𝑒𝑠𝑡). As a remedy, a common approach is to

apply regularization: i.e., instead of minimizing the empirical risk, one

modifies the objective function by:

Hereby, Ω : P → R≥0 is a function (called regularizer), which prefers

“simple” programs.

USING REPRESENTATIVE DATASET SAMPLER

Doctoral School of Computer Science

The complexity of solving ERM (empirical risk minimization) is heavily

dependent on the size of the dataset D. To enable ERM on the large

dataset D, we use Algorithm 2 with a representative dataset sampler

𝑑𝑠𝑅 and a program generator that solves ERM on small datasets

(sample subsets 𝑑1, 𝑑2, . . . 𝑑𝑚 ⊆ D). Our goal upon termination of the

synthesis procedure from Algorithm 2 is to obtain a program pm for

which:

USING REPRESENTATIVE DATASET SAMPLER

Doctoral School of Computer Science

Recall that R(pbest) ≤ R(𝑝∗) + ε to obtain that the resulting solution pm

will have risk at most ε + ε' more than 𝑝∗.

By exploiting the fact that we can solve ERM much faster on small

datasets 𝑑𝑖, we can find such a solution much more efficiently than

solving the ERM problem on the full dataset D.

This instantiation is a new approach of performing approximate ERM

over discrete search spaces.

LEARNING A SYNTHESIZER WITH “BIG

CODE”

1. Previously on the show

2. Architecture variants of tools learning tools from “Big Code”

3. Terminology

4. Inductive synthesis for empirical risk minimization

5. Deepsyn: learning statistical code completion systems

Contents

Doctoral School of Computer Science

DEEPSYN: LEARNING STATISTICAL CODE COMPLETION SYSTEMS

Doctoral School of Computer Science

In this section we present a new approach for constructing statistical

code completion systems.

While not obvious, we show that the problem of synthesizing a program

from noisy data appears in this setting as well, and thus the general

framework of synthesis with noise (Chapter 4) applies here.

This means that the learned program does not predict its output directly

from the input, but instead is used as part of a probabilistic model that

performs the final prediction seen by the developer.

PRELIMINARIES

Doctoral School of Computer Science

We begin with a standard definition of context-free grammars (CFGs),

trees and parse trees.

Definition 5.1 (CFG). A context-free grammar (CFG) is the quadruple (N,

Σ,s, R) where N is a set of non-terminal symbols, Σ is a set of terminal

symbols, s ∈ N is a start symbol, R is a finite set of production rules of

the form α → 𝛽1... 𝛽𝑛 with α ∈ N and 𝛽𝑖 ∈ N ∪ Σ for i ∈ [1..n].

In the whole exposition, we will assume that we are given a fixed CFG:

G = (N, Σ,s, R).

PRELIMINARIES

Doctoral School of Computer Science

Definition 5.2 (Tree). A tree T is a tuple (𝑋, 𝑥0, ξ) where 𝑋 is a finite set

of nodes, 𝑥0 ∈ 𝑋 is the root node and ξ : 𝑋 → 𝑋∗ is a function that

given a node returns a list of its children. A tree is acyclic and connected:

every node except the root appears exactly once in all the lists of

children. This means that there is a path from the root to every node.

Finally, no node has the root as a child.

PRELIMINARIES

Doctoral School of Computer Science

Definition 5.3 (Partial parse tree). A partial parse tree is a triple (T, G, σ)

where T = (𝑋, 𝑥0 , ξ) is a tree, G = (N, Σ,s, R) is a CFG, and σ : 𝑋 → Σ

∪ N attaches a terminal or non-terminal symbol to every node of the tree

such that: if ξ(x) = 𝑥𝑎1... 𝑥𝑎𝑛 (n > 1), then ∃(α → β1... β𝑛) ∈ R with σ(x)

= α and ∀i ∈ 1..n.σ(𝑥𝑎𝑖) = β𝑖 .

PRELIMINARIES

Doctoral School of Computer Science

Definition 5.4 (Tree completion query). A tree completion query is a triple

(𝑝𝑡𝑟𝑒𝑒, 𝑥𝑐𝑜𝑚𝑝,rules) where 𝑝𝑡𝑟𝑒𝑒 = (T, G, σ) is a partial parse tree with

T = (X, 𝑥0, ξ), 𝑥𝑐𝑜𝑚𝑝 ∈ X is a node labeled with a non-terminal symbol

(σ(𝑥𝑐𝑜𝑚𝑝) ∈ N) where a completion will be performed, and

rules = {σ(𝑥𝑐𝑜𝑚𝑝) → β𝑖} n𝑖 = 1 is the set of available rules that one can

apply at the node 𝑥𝑐𝑜𝑚𝑝.

PRELIMINARIES

Doctoral School of Computer Science

Problem statement The code completion problem we are solving can

now be stated as follows:

Given a tree completion query, select the most likely rule from the set of

available rules and complete the partial parse tree with it.

EXAMPLE: FIELD/API COMPLETION

Doctoral School of Computer Science

Consider the following partial JavaScript code ”console.” which the user

is interested in completing. The goal of a completion system is to predict

the API call log, which is probably the most likely one for console. Now

consider a simplified CFG that can parse such programs (to avoid clutter,

we only list the grammar rules):

GetProp → Object Property

Object → Var | GetProp

Var → console | document | ... (other variables)

Property → info | log | ... (other properties incl. APIs)

SECOND-ORDER LEARNING

Doctoral School of Computer Science

The key idea of our solution is to synthesize a program which conditions

the prediction.

SECOND-ORDER LEARNING

Doctoral School of Computer Science

In our setting, a context c ∈ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 is a sequence ranging over

terminal and non-terminal symbols seen in the tree, as well as integers.

That is, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 = (𝑁 ∪ Σ ∪ ℕ)∗.

STEP 1: REPRESENTATION SYNTHESIS

Doctoral School of Computer Science

The goal of the first step is to learn a conditioning program 𝑝≈𝑏𝑒𝑠𝑡 ∈ P. In

this step, we will apply the techniques for approximate empirical risk

minimization. Let D = {𝑋𝑖,𝑌𝑖}𝑖=1
𝑛 be a training dataset of tree completions

queries𝑋𝑖 = (𝑝𝑡𝑟𝑒𝑒 , 𝑥𝑐𝑜𝑚𝑝
𝑖 ,𝑟𝑢𝑙𝑒𝑠) along with their corresponding

completions 𝑌𝑖 ∈ 𝑟𝑢𝑙𝑒𝑠. We assume that all examples in D solve the

same task and thus they share the CFG production rules.

The goal of this step is to synthesize the (approximately) best conditioning

program 𝑝≈𝑏𝑒𝑠𝑡∈ PT × 𝑋 → 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 that given a query returns the

context on which to condition the prediction. For instance, for the example

in Fig. 5.3, a possible program p could produce p(𝑝𝑡𝑟𝑒𝑒, 𝑥𝑐𝑜𝑚𝑝) =

[console].

STEP 2: LEARN A PROBABILISTIC MODEL P(RULE | CTX)

Doctoral School of Computer Science

Once the conditioning program 𝑝≈𝑏𝑒𝑠𝑡 is learned, we use that program to train a

probabilistic model. We next apply 𝑝≈𝑏𝑒𝑠𝑡 to every query in the training data,

obtaining a new data set: H(D, 𝑝≈𝑏𝑒𝑠𝑡) = {(𝑝≈𝑏𝑒𝑠𝑡(𝑄𝑖), 𝑌𝑖) | ((𝑄𝑖,𝑟𝑢𝑙𝑒𝑠), 𝑌𝑖) ∈ D}

where 𝑄𝑖 = (𝑝𝑡𝑟𝑒𝑒, 𝑥𝑐𝑜𝑚𝑝
𝑖). The derived data set consists of a number of pairs

where each pair {(𝑐𝑖 ,𝑟𝑖)} indicates that rule 𝑟𝑖 is triggered by context 𝑐𝑖 ∈
𝐶𝑜𝑛𝑡𝑒𝑥𝑡. Based on this derived set, we can now train a probabilistic model using

MLE training (maximum likelihood estimation) which estimates the true probability

P(𝑟 | 𝑐). The MLE estimation is standard and is computed as follows:

The MLE simply counts the number of times rule 𝑟 appears in context 𝑐 and

divides it by the number of times context 𝑐 appears.

STEP 3: PERFORM PREDICTIONS

Doctoral School of Computer Science

Once we have learned the conditioning program 𝑝≈𝑏𝑒𝑠𝑡 and the probabilistic

model P(rule | ctx), we use both components to perform prediction. That is, given

a query (𝑝𝑡𝑟𝑒𝑒, 𝑥𝑐𝑜𝑚𝑝,𝑟𝑢𝑙𝑒𝑠), we first compute the context

ctx = 𝑝≈𝑏𝑒𝑠𝑡(𝑝𝑡𝑟𝑒𝑒, 𝑥𝑐𝑜𝑚𝑝). Once the context is obtained, we can use the

trained probabilistic model to select the best completion (i.e., the most likely rule)

from the set of available rules:

STEP 3: PERFORM PREDICTIONS

Doctoral School of Computer Science

TCOND: DOMAIN SPECIfiC LANGUAGE FOR TREE CONTEXTS

Doctoral School of Computer Science

We now present a domain specific language, called TCond, for expressing the

conditioning function p. The language is loop-free and is summarized in Fig. 5.5.

TCOND: DOMAIN SPECIfiC LANGUAGE FOR TREE CONTEXTS

Doctoral School of Computer Science

Every statement of the language transforms a state v ∈ PT×X×Context. The state

contains a partial tree, a position in the partial tree and the (currently) accumulated

context.

The language has two types of instructions: movement (MoveOp) and write

instructions (WriteOp). The program is executed until the last instruction and the

accumulated context is returned as the result of the program.

TCOND: DOMAIN SPECIfiC LANGUAGE FOR TREE CONTEXTS

Doctoral School of Computer Science

Move instructions change the node in a state as follows:

TCOND: DOMAIN SPECIfiC LANGUAGE FOR TREE CONTEXTS

Doctoral School of Computer Science

Write instructions update the context of a state as follows:

TCOND: DOMAIN SPECIfiC LANGUAGE FOR TREE CONTEXTS

Doctoral School of Computer Science

The PrevActor and WriteAction instructionsuseasimplelightweight static analysis. If

node denotes a memory location (field, local or global variable, that we call actor),

PrevActor moves to the previous mention of the same memory location in the tree.

WriteAction writes the name of the operation performed on the object referred by

node. In case the object referred by node is used for a field access, WriteAction

will write the field name being read from the object. In case the object node is

used with another operation (e.g., +), the operation will be recorded in the context.

Thanks for your attention!

