Learning From Large Codebases: Chapter 1 (part 2)

Prediction algorithm

$$y = \arg \max_{y' \in \Omega_x} Pr(y'|x) = \arg \max_{y' \in \Omega_x} score(y', x) = \arg \max_{y' \in \Omega_x} w^T f(y', x)$$

x – input program

y – predicted labels

Prediction algorithm

```
1: for pass \in [1...(\text{num passes})] do
         for each node v with unknown property do
 2:
              E_v \leftarrow \text{all edges adjacent to } v
 3:
              score_v \leftarrow score(E_v, (y, z))
 4:
              for l' \in \text{candidates}(v, (y, z), E_v) do
 5:
                  l \leftarrow y_v
 6:
                  y_v \leftarrow l'
 7:
                  if score(E_v, (y, z)) > score_v and y \in \Omega_x then
 8:
                       score_v \leftarrow score(E_v, (y, z))
 9:
                   else
10:
                       y_v \leftarrow l
11:
```

Prediction algorithm

$$score(E, A) = \sum_{(a,b,rel) \in E} \sum_{i=1} w_i \psi_i(A_a, A_b, rel)$$

$$candidates(v, A, E) =$$

$$= \bigcup_{\langle a,v,rel \rangle \in E} \{l^2 \mid \langle l^1, l^2, r \rangle \in topL_s(A_a, rel)\} \cup$$

$$\bigcup_{\langle v,b,rel \rangle \in E} \{l^1 \mid \langle l^1, l^2, r \rangle \in topR_s(A_b, rel)\}$$

Additional improvements

- Control number of candidates
- Optimization on pairs of nodes

Learning parameters

Our goal:

$$\forall j, \forall y' \in \Omega_{x^{(j)}} \ score(y^{(j)}, x^{(j)}) \ge score(y', x^{(j)}) + \Delta(y^{(j)}, y')$$

For every object $(x^{(j)},y^{(j)})$ in training set.

$$\Delta(y^{(j)},y')$$
 – margin function

Loss function

Loss function for one object:

$$\ell(\boldsymbol{w}; x^{(j)}, \boldsymbol{y}^{(j)}) = \max_{\boldsymbol{y}' \in \Omega_{x^{(j)}}} \left(\boldsymbol{w}^T [\boldsymbol{f}(\boldsymbol{y}', x^{(j)}) - \boldsymbol{f}(\boldsymbol{y}^{(j)}, x^{(j)})] + \Delta(\boldsymbol{y}^{(j)}, \boldsymbol{y}') \right)$$

Optimal parameters can be found as:

$$\mathbf{w}^* = \underset{\mathbf{w} \in \mathcal{W}_{\lambda}}{\operatorname{arg min}} \sum_{j=1}^{t} \ell(\mathbf{w}; x^{(j)}, \mathbf{y}^{(j)})$$

Projected Stochastic Gradient Descent

```
1: W_{\lambda} = \{w | w_i \in [0, 1/\lambda] \text{ for all } i\}

2: while w not converged do

3: g \leftarrow \nabla_w l(w, x^{(j)}, y^{(j)})

4: w \leftarrow w - \alpha g

5: w \leftarrow \operatorname{Proj}_{W_{\lambda}}(w)
```

$$\operatorname{Proj}_{W_{\lambda}}(w): w_i' = \max(0, \min(1/\lambda, w_i))$$

How to compute gradients?

$$g = f(y_{\text{best}}, x^{(j)}) - f(y^{(j)}, x^{(j)})$$

$$y_{\text{best}} = \arg\max_{y' \in \Omega_{x^{(j)}}} (\text{score}(y', x^{(j)}) + \Delta(y^{(j)}, y'))$$

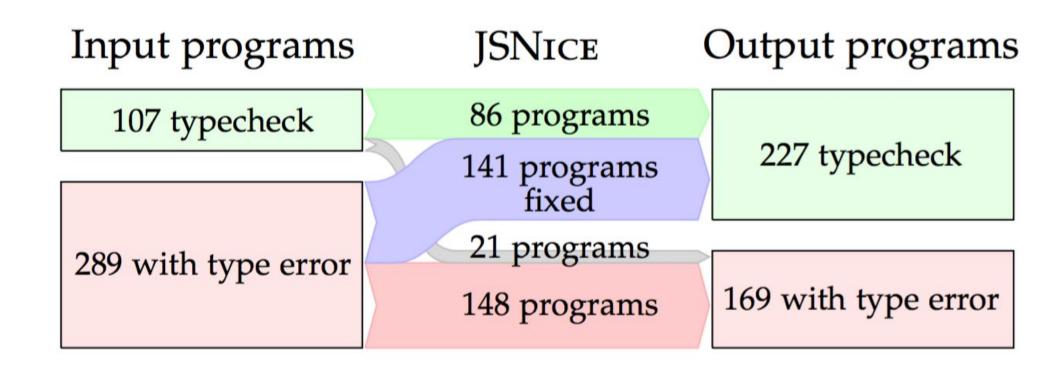
Details

- Lambda and delta are chosen via cross-validation.
- Train set consists of 324,501 files. Test set consists of 2,710 files.
- Train set is collected from GitHub, test set is collected from BitBucket

Results

System	Names	Types	Types
	Accuracy	Precision	Recall
all training data	63.4%	81.6%	66.9%
10% of training data 1% of training data	54.5%	81.4%	64.8%
	41.2%	77.9%	62.8%
all data, no structure	54.1%	84.0%	56.0%
baseline - no predictions	25.3%	37.8%	100%

Typechecking Results



Running times

Beam size parameter	Name prediction		Type pred	Type prediction	
b	Accuracy	Time	Precision	Time	
4	57.9%	43ms	80.6%	36ms	
8	59.2%	60ms	80.9%	39ms	
16	62.8%	62ms	81.6%	33ms	
32	63.2%	80ms	81.3%	37ms	
64 (JSNice)	63.4%	114ms	81.6%	40ms	
128	63.5%	175ms	82.0%	42ms	
256	63.5%	275ms	81.6%	50ms	
Naïve greedy, no beam	62.8%	115.2 s	81.7%	410ms	