
Coordination Avoidance in Distributed
Databases

Seminar 1

Ziganurova Liliia

07.02.2018

National Research University Higher School of Economics



Outline

1. Introduction

2. Coordination: Concepts and Costs

3. System model

4. Invariant Confluence and Coordination

1



Introduction



Introduction

The difficulties of operations over distributed computer networks are:

• delays;

• partial failures;

• uncertainty about global state, etc.

In many applications the difficulties of distributed systems design are
relegated to a database tier. The goal of the work is to study the
design of database systems that provide coordination-free
execution, which implies availability, low latency and scalability.

2



Introduction

Objectives:

1. Define a rule for determining wether a coordination-free
implementation of a given safety properties exists (invariant
confluence).

2. Examine a set of common semantic guarantees found in databases
today and apply the criterion of invariant confluence on them.

3. Find a coordination-free implementation of invariant confluent
semantics.

3



Reasoning about distributed databases

• Should you and I be able to simultaneously reserve rooms?

• Can you reserve a room while I log in?

• Can you tweet while I change my username?

Definition: We say that two operation must coordinate if they cannot
execute concurrently on independent copies of the database state.

The classic solution for maintaining invariants is to serializable isolation:
execute transactions such that the end result is equivalent to some
sequential execution.

The problem is that serializable semantics require coordination.

4



Coordination: Concepts and
Costs



Coordination is expensive

1. Low latency

2. Throughput

3. Scalability

4. Availability

5



Coordination is expensive: Latency

Messages travel is slower that the speed of light due to routing,
congestion, and computational overheads.

6



Coordination is expensive: Throughput

Three algorithms were implemented:

1. Traditional two-phase locking;
2. Optimized two-phase locking;
3. Coordination-free.

7



Coordination is expensive: Scalability

8



Coordination is expensive: Availability

Availability: in the presence of communication failures between servers,
each client’s operations may still proceed, providing “always on”
functionality.

A 2011 study of several Microsoft datacenters observed:

• over 13300 network failures with end-user impact;

• 59000 packets lost per failure;

• mean of 40.8 network link failures per day;

• median time to repair 5 minutes (up to 1 week).

9



System model: database, transaction, replicas

• Databases: a set D of unique versions of data items located on an
arbitrary set of database servers;

• Users submit request in the form of transactions - ordered group of
operations on data items.

• Each transaction operates on a replica - a set of versions of the
items mentioned in the transaction.

• Transaction is a transformation on a replica: T : D → D
• Upon completion, each transaction can commit or abort.

• Upon commit, the replica state is subsequently merged into the
local database.

Each transaction can modify its replica state without modifying any other
concurrently executing transactions’ replica state. Replicas provide
transactions with partial “snapshot” views of the global database.

10



System model



System model: invariants

• Invariants are needed to determine where a database is valid
according to application criteria. Invariants are predicated over
databases: I : D → {true, false} (ex.: unique key, nonzero values).

• A database state is valid under an invariant I (or I -valid) if it
satisfies the predicate: A replica state R ∈ D is I -valid, iff
I (R) = true.

• A system is globally I-valid if all replicas always contain I-valid
state.

11



System model: availability, convergence

• Availability means that whenever a client executing a transaction T

can access servers containing each items in T , the T eventually
commits unless: 1) there is an explicit abort operation in T ; 2) T
violates a declared invariant.

• A system is convergent iff for each pair of servers in the absence of
new writes or indefinite communication delays, the servers eventually
contain the same versions for any items they both store (via merge
operator).

12



System model: coordination-free execution

A system provides coordination-free execution for a set of transactions
T iff the progress of executing each t ∈ T in only dependent on t’
replica’s state (i.e. the versions of the items t reads).

13



Invariant Confluence: Criteria Defined

KEY QUESTION: Can invariants can be violated by merging independent
operations? ANSWER: Invariant confluence test (ICT).

Invariant confluence is a property, that ensured that divergent but
I -valid database states can be merged into a valid database state.

14



Invariant Confluence and
Coordination



Invariant Confluence: I-T-reachable state

We say that a database Di is a I-T-reachable state if, given an invariant
I and a set of transactions T , there exist a partially ordered set of
transactions and merge functions that yields Di , and each intermediate
state is I -valid.

All previous states are called ancestor states.

15



Invariant Confluence: Definition

A set of transactions T is invariant confluent with respect to invariant I
if, for all I-T-reachable states Di , Dj with a common ancestor state,
Di t Dj is valid.

16



The main theorem

Theorem 1. A globally I -valid system can execute a set of transactions
T with coordination-freedom, transactional availability, and convergence,
iff T is invariant confluent with respect to I .

Invariant confluence is a necessary and sufficient condition for
invariant-preserving, coordination-free execution.

How to prove. Backward direction: if invariant confluence holds, each
replica can check each transaction’s modifications locally and replicas can
merge independent modifications to guarantee convergence to a valid
state. Forward direction: by contradiction: construct a scenario where a
system cannot determine whether a non-invariant confluent transaction
should commit without violating one of our desired properties (validity,
availability, convergent).

17



Lemma

Lemma 1 Given a set of transactions T and invariants I , a globally
I-valid, coordination-free, transactionally available, and convergent
system is able to produce any I-T-reachable state Si .

18



The proof of the Theorem 1:

(⇐): 1) Each server executes the transactions against a replica of its
current state. 2) Checks whether the results are I -valid. 3) If the result is
I -valid, the replica commits the transaction, and aborts it otherwise. 4)
Servers exchange copies of their local states and merge them. The merge
of two I -valid states is valid, because T is invariant confluent.

(⇒): on the blackboard

19



Summary

• The difficulties of distributed systems design are relegated to a
database tier;

• Coordination is costly;

• It is possible to create a database with coordination-free execution,
which implies availability, low latency and scalability;

• Invariant confluence helps to ensure that divergent but valid
database states can be merged into a valid database state;

• If all local commit decisions are globally valid then coordination can
be avoided.

20



Home taken message

21


	Introduction
	Coordination: Concepts and Costs
	System model
	Invariant Confluence and Coordination

