Data Complexity of Answering Ontology-Mediated Queries with a Covering Axiom

Olga Gerasimova

Research advisor: professor M.V. Zakharyaschev

Department of Data Analysis and Artificial Intelligence Faculty of Computer Science National Research University Higher School of Economics

19 November, 2018

An ontology is an engineering artefact that

- is constituted by a specific vocabulary used to describe a certain domain of interest;
- is a set of explicit assumptions (rules) regarding the intended meaning of the vocabulary;
- is a formal and machine manipulable model of a domain of interest.

Definition

Ontology – a formal report of *individuals*, *classes* and *properties* (or relations) that are considered in the framework of a domain of interest.

< ロ > < 同 > < 回 > < 回 >

Ontology-based data access (OBDA)

- gives a high-level conceptual view of the data
- Provides the user with a convenient vocabulary for queries
- allows the system to enrich incomplete data with background knowledge
- supports queries to multiple and heterogeneous data sources

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

For example, we have the table

title						
movie ID	title	year	kind			
728	`Django Unchained'	2012	1			
1257	'Game of Thrones'	2011	2			
2543	`Blade Runner'	1982	1			

and the ontology vocabulary containing **classes** such as *Movie*, *Title*, *Year*, *Kind* and **relations** such as *has_title*, *was_released_in* and *has_kind*.

We need to translate the table into the data schemes related to the ontology vocabulary via mappings. Then, we obtain:

- Movie(728), Movie(1257), Movie(2543), Title(Django Unchained), Title(Game of Thrones), Title(Blade Runner), Year(2012), Year(2011), Year(1982), Kind(1), Kind(2);
- has_title(728,Django Unchained), was_released_in(728,2012), has_kind(728,1), ...

Definition

Description Logic (DL) is an area of knowledge representation and reasoning in Artificial Intelligence and the Semantic Web that studies **logic-based formalisms** whose languages operate with **concepts** to represent classes of individuals in an application domain, and **roles** to represent binary relations between the individuals.

OWL 2QL

OWL2QL (OWL – Web Ontology Language) contains *individual names* a_i , concept names A_i , and role names P_i (i = 1; 2; ...).

R	::=	P_i	P_i^- ,	
B	::=	\perp	A_i	$\exists R,$
C	::=	B	$\exists R.B$	

TBox, T, – a finite set of (1) concept and role inclusions, (2) concept and role disjointness constraints of the forms

 $B \sqsubseteq C, \qquad R_1 \sqsubseteq R_2$ $B_1 \sqcap B_2 \sqsubseteq \bot, \qquad R_1 \sqcap R_2 \sqsubseteq \bot$

ABox, A_i – a finite set of assertions of the form $A_k(a_i)$ and $P_k(a_i; a_j)$ and *inequality constraints* $a_i \neq a_j$ for $i \neq j$. *T* and *A* together constitute **the knowledge base** $K = (T_i; A)$ • The user formulates a *query* **q** in the vocabulary of a given *ontology* **T**.

The task of an OBDA system

To 'rewrite' q and T into a new query q_0 in the vocabulary of the data such that, for any possible data A (in this vocabulary), the answers to q over (T; A) are precisely the same as the answers to q_0 over A.

Example

- (1) Dancer $\sqsubseteq \exists is Trained By$. Choreographer (5) Latina Ch \sqsubseteq Choreographer
- (2) $\exists participates.Competition \sqsubseteq Dancer$
- (3) Choreographer \sqsubseteq MasterOfSport
- (4) StandartCh \sqsubseteq Choreographer

- (6) StandartCh \sqcap LatinaCh $\sqsubseteq \bot$
- (7) is Trained By $^- \sqsubseteq$ trains
- (8) trains \sqsubseteq is Trained By⁻

$$q(x) = \exists y (MasterOfSport(y) \land trains(y, x))$$

 $q'(x) = \exists y [(MasterOfSport(y) \lor StandartCh(y) \lor LatinaCh(y) \lor Choreographer(y) \lor StandartCh(y) \lor LatinaCh(y) \lor Choreographer(y) \lor StandartCh(y) \lor LatinaCh(y) \lor Choreographer(y) \lor StandartCh(y) \lor Standart$

 \land (trains(y,x) \lor is TrainedBy(x, y))] \lor Dancer(x) $\lor \exists z \text{ participates}(x, z)$

 $\mathcal{A} = \{ Dancer(a), Choreographer(b), trains(b, c), participates(d, e) \}$ Answer to q(x) according to \mathcal{A} : $\{ \varnothing \}$ Answer to q'(x) according to \mathcal{A} : $\{ a, c, d \} \Leftrightarrow q(x)$ according to $(\mathcal{T}; \mathcal{A})$

イロン イロン イヨン イヨン 二日

Big problem 1: how to determine the data complexity of answering a given ontology-mediated query $(\mathcal{O}, \boldsymbol{q})$ with an 'expressive' ontology \mathcal{O} and a Boolean conjunctive query \boldsymbol{q} ?

That is, the complexity of deciding whether $\mathcal{O}, \mathcal{D} \models q$ for a given input data instance \mathcal{D}

Big problem 1': how to determine whether $(\mathcal{O}, \boldsymbol{q})$ is

- FO-rewritable, that is, whether there is an FO-sentence q' such that, for any data D, we have $\mathcal{O}, \mathcal{D} \models q$ iff $\mathcal{D} \models q'$ (AC⁰)
- linear-datalog-rewritable (in NL)datalog-rewritable (in PTime)

< ロ > < 同 > < 回 > < 回 >

Our little problem

Covering axiom

$A \sqsubseteq T \sqcup F$ class A is covered by classes T and F**Example:** Animal \sqsubseteq Female \sqcup Male

Global covering and disjointness

 $\top \sqsubseteq T \sqcup F \qquad \text{everything is covered by } T \text{ and } F$ **Disjointness:** $T \sqcap F \sqsubseteq \bot \qquad \top \sqsubseteq Alive \sqcup Dead, Alive \sqcap Dead \sqsubseteq \bot$

Notation:

 $\begin{array}{l} \mathsf{Cov}_{\top} = \{\top \sqsubseteq F \sqcup T\} \\ \mathsf{Cov}_{\top}^{\perp} = \{\top \sqsubseteq F \sqcup T, \ F \sqcap T \sqsubseteq \bot\} \end{array}$

 $Cov_{\mathcal{A}} = \{ \mathcal{A} \sqsubseteq \mathcal{F} \sqcup \mathcal{T} \}$ $Cov_{\mathcal{A}}^{\perp} = \{ \mathcal{A} \sqsubseteq \mathcal{F} \sqcup \mathcal{T}, \ \mathcal{F} \sqcap \mathcal{T} \sqsubseteq \bot \}$

< 日 > < 同 > < 回 > < 回 > < □ > <

Problem

Classify syntactically CQs q w.r.t. complexity of answering (Cov, q)

 Does John have a female friend who hates a male (not female)

 person?

 John
 Female

 ¬Female

Andrea example

Consider the ABox \mathcal{A} :

.lohn

$\mathcal{T} = \{\top \sqsubseteq \textit{Female} \sqcup \textit{Male}\}$

Does John have a female friend who hates a male (not female) person?

hates

4 A N

friend

Andrea example

Consider the ABox \mathcal{A} :

friend friend (John; Susan) : friend (John; Andrea) : friend Andrea Susan (Susan; Andrea) : hates hates Female Female (Andrea; Bill) : hates hates Susan: Female Bill Bill : ¬Female ¬Female

.John

$\mathcal{T} = \{\top \sqsubseteq \textit{Female} \sqcup \textit{Male}\}$

Does John have a female friend who hates a male (not female) person?

friend

hates

4 A N

Andrea example

Consider the ABox \mathcal{A} :

John

$\mathcal{T} = \{\top \sqsubseteq \textit{Female} \sqcup \textit{Male}\}$

Does John have a female friend who hates a male (not female) person?

hates

4 A N

friend

Typical examples for $Cov_A = \{A \sqsubseteq F \sqcup T\}$

Complexity	CQ q	Explanation	
AC ⁰	<i>F</i> ○>○	if q has only <i>F</i> atoms but no <i>T</i> then the F can be ignored	
L	F 🗢 T	checks undirected reachability: $F \circ \longrightarrow \circ \circ \longrightarrow \circ T$ the answer to Q is 'yes'	
NL	F ○→○ T	checks directed reachability: $F \circ \longrightarrow \circ \longrightarrow \circ T$ the answer to Q is 'yes'	
Р	T F T ○→○	evaluates monotone Boolean circuits <i>C</i>	
coNP	$\begin{array}{ccc} F & F & T & T \\ \circ & & \circ & & \circ & & \circ \end{array}$	checks CNF satisfiability	

Naïve idea: classify q according to the number of occurrences of T, F

• • • • • • • • • • • •

 AC^{0}

On the Data Complexity of OMQ with a CA

19.11.2018 17/24

Examples of NL-complete queries:

NL-complete queries

On the Data Complexity of OMQ with a CA

19.11.2018 19/24

P-hardness via monotone circuits

We can see that $\mathfrak{C}(\vec{\alpha}) = 1$ iff Cov, $\mathcal{A}^{\alpha}_{\sigma} \models \boldsymbol{q}$.

 $\mathcal{A}^{lpha}_{\mathfrak{C}_2}$:

Schaerf's (1993) example

 (Cov_{\top}, \textbf{q}) with q on the right is coNP-complete

Conjecture

For (tree-shaped) \boldsymbol{q} with at least two solitary F and two solitary T, (Cov_A, \boldsymbol{q}) is coNP-hard

Proving CONP-hardness by reduction to 3CNF

Gadget for p and $\neg p$ in a 3CNF with n clauses:

Gadget for one clause $c = (p \lor q \lor \neg r)$:

The resulting ABox A_{ψ} is such that ψ is satisfiable iff $\text{Cov}_{A}, A_{\psi} \not\models \boldsymbol{q}$

- We have found quite a few syntactic and semantic sufficient and/or necessary conditions for OMQ (Cov; q) to be in this or that complexity class
- We are still aiming at a general complete classification, but the connections to other notoriously hard problems indicate that achieving this aim will be difficult

Thank you for attention!