Исследование магнитной структуры ErFe₃(BO₃)₄ спектроскопическими и термодинамическими методами

Е.А.Попова 1 , <u>Е.П. Чукалина</u> 2 , А. Яблуновский 3 , Д.А. Ерофеев 2 , С.А. Климин 2 , И.А. Гудим 4 , М.Н.Попова 2

Легкоплоскостной магнетик $ErFe_3(BO_3)_4$, кристаллизуется тригональной нецентросимметричной структуре типа хантита и относятся к известному классу мультиферроиков $RFe_3(BO_3)_4$ (R=Y, La-Lu). Мультиферроики, характеризующиеся существенной взаимосвязью различных подсистем (магнитной, электрической, решеточной), представляют практический интерес спинтроники оптоэлектроники. формировании магнитоэлектрических свойств кристаллов RFe₃(BO₃)₄ важную роль играет R-Fe обменное взаимодействие. Так, в частности, в зависимости от типа R^{3+} иона при антиферромагнитном упорядочении спины железа ориентируются либо вдоль тригональной оси с (легкоосная структура), либо в базисной *ab*-плоскости (легко-плоскостная структура). Целью настоящей работы является объяснение термодинамических свойств ErFe₃(BO₃)₄ и получение дополнительной информации о магнитной структуре с учётом данных об электронных уровнях основного мультиплета ${}^{4}I_{15/2}$ иона Er^{3+} .

Ферроборат эрбия при температурах выше комнатной претерпевает фазовый переход из структурной фазы R32 в низкосимметричную структурную фазу $P3_121$. Анализ температурных зависимостей характеристик спектральных линий, соответствующих f-f переходам в ионах Er^{3+} выявил особенности, связанные с антиферромагнитным упорядочением при T_N =39 K в $ErFe_3(BO_3)_4$ и позволил построить энергетическую схему штарковских уровней основного мультиплета $^4I_{15/2}$ (0, 46, 105, 160, 194, 244, 279, 296 cm $^{-1}$). Обменное расщепление основного состояния иона Er^{3+} составляет 6.3 cm $^{-1}$. Спектроскопические данные использованы при моделировании температурных зависимостей теплоёмкости C(T) и магнитной восприимчивости $\chi(T)$ $ErFe_3(BO_3)_4$, измеренных в работе [1]. В результате проведена корректировка магнитной структуры $ErFe_3(BO_3)_4$, установленной из данных эксперимента по рассеянию нейтронов на порошках [2]. Наилучшее согласие с экспериментальными данными по $\chi(T)$ достигнуто, если предположить, что ионы железа образуют доменную структуру в объеме кристалла, причем в каждом домене магнитные моменты ионов Er^{3+} лежат в базисной плоскости и направлены перпендикулярно локальной оси C_2 иона Er^{3+} . При этом две из трех позиций эрбия магнитно эквивалентны, что согласуется с результатами моделирования аномалии Шоттки на теплоёмкости C(T).

Работа поддержана Российским Научным Фондом (грант № 19-12-00413). Работа выполнена в ходе проведения исследования (проект №19-04-030) в рамках Программы «Научный фонд Национального исследовательского университета "Высшая школа экономики" (НИУ ВШЭ)» в 2018-2019 гг. и в рамках государственной поддержки ведущих университетов Российской Федерации «5-100».

¹Национальный исследовательский университет «Высшая школа экономики» 101000, г. Москва, ул. Мясницкая, д. 20

²Институт спектроскопии Российской Академии Наук, 108840, г. Москва, г. Троицк

³Московский физико-технический институт (национальный исследовательский университет), 141701, г. Долгопрудный, Московская обл.

 $^{^4}$ Институт физики им. Л.В.Киренского СО РАН, 660036, г. Красноярск

^[1] E.A. Popova, A.N. Vasiliev, V.L. Temerov, L.N. Bezmaternykh, N. Tristan, R. Klingeler, B. Buchner. // J. Phys.: Condens Matter, Vol. 22, P. 116006 (2010).

^[2] C. Ritter, A. Vorotynov, A. Pankrats, G. Petrakovski, V. Temerov, I. Gudim and R. Szymczak. // J. Phys.: Condens. Matter, Vol. 22,. P. 206002 (2010).