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Chain structures

Recently, the discovery of Cr2As3-chains and organic compounds
such as potassium-doped p-terphenyl (K𝑥C18H14) have raised the
attention of our community due to intriguing experimental results,
showing high superconducting critical temperatures (up to 120K).

a) b) c)

Figure: Molecular structures of the a) p-terphenyl and b) Cr2As3 chains. c)
Fermi surfaces of Cr2As3 with quasi-1D and 3D Fermi sheets [PRB 92,
104511 (2015)].
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Multiband Sytems

Consider the multiband system with two gaps given in terms of the
anomalous averages [PRL 3, 12 (1959)]

Δ𝑖 =
2

∑
𝑗=1

𝑔𝑖𝑗 ⟨𝜓↓𝑗𝜓↑𝑗⟩ , (1)

where 𝑖 = 1, 2. The coupling matrix 𝑔 is considered symmetric.
The gap expansion is given in terms of the band-dependent
unperturbed Green functions:

𝒢(0)
𝜔𝑖 ( ⃗𝑥, ⃗𝑦) = ∫ 𝑑3𝑘

2𝜋
exp[−𝑖�⃗� ⋅ ( ⃗𝑥 − ⃗𝑦)]

𝑖ℏ𝜔 − 𝜉𝑘𝑖
(2)

and ̄𝒢(0)
𝜔𝑖 ( ⃗𝑥, ⃗𝑦) = −𝒢(0)

−𝜔𝑖( ⃗𝑦, ⃗𝑥). They are dependent on the fermionic
Matsubara frequencies 𝜔𝑛 = 𝜋𝑇 (2𝑛 + 1)/ℏ (in our notation 𝑘𝑏 = 1).
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Dispersion Relations

The strongest band (labeled 𝑖 = 1) has quasi-1D Fermi surfaces, in
such a way that the dispersion relation has very large effective
electronic masses in two directions, say, 𝑚𝑦, 𝑚𝑧 ≫ 𝑚𝑥, in such a
way that one can approximate:

𝜉𝑘1 = ∑
𝑙=𝑥,𝑦,𝑧

ℏ2𝑘2
𝑙

2𝑚𝑙
− 𝜇 ≈ ℏ2𝑘2

𝑥
2𝑚𝑥

− 𝜇. (3)

The weaker band (labeled 𝑖 = 2) is the usual 3D band:

𝜉𝑘2 = ℏ2𝑘2

2𝑚 − 𝜇. (4)
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Figure: Sketch of the band-dependent single-electron energies 𝜉1 and 𝜉2 as
function of the momentum.
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The Gorkov equations produce the following expansion for the gap in
terms of 𝒢(0)

𝜔𝑖 and ̄𝒢(0)
𝜔𝑖 [PRB 85, 014502 (2012)]:

∑
𝑗

𝛾𝑖𝑗Δ𝑗( ⃗𝑥) = ∫ 𝑑3𝑦𝐾𝑎𝑖( ⃗𝑥, ⃗𝑦)Δ𝑖( ⃗𝑦)

+ ∫
3

∏
𝑙=1

𝑑3𝑦𝑙𝐾𝑏𝑖( ⃗𝑥, ⃗𝑦1, ⃗𝑦2, ⃗𝑦3)Δ𝑖( ⃗𝑦1) ̄Δ𝑖( ⃗𝑦2)Δ𝑖( ⃗𝑦3) + ..., (5)

where 𝛾 = 𝑔−1 and we have defined the kernels

𝐾𝑎𝑖( ⃗𝑥, ⃗𝑦) = −𝑔𝑇 ∑
𝜔

𝒢(0)
𝜔𝑖 ( ⃗𝑥, ⃗𝑦) ̄𝒢(0)

𝜔𝑖 ( ⃗𝑦, ⃗𝑥), (6)

𝐾𝑏𝑖( ⃗𝑥, ⃗𝑦1, ⃗𝑦2, ⃗𝑦3) = −𝑔𝑇 ∑
𝜔

𝒢(0)
𝜔𝑖 ( ⃗𝑥, ⃗𝑦1) ̄𝒢(0)

𝜔𝑖 ( ⃗𝑦1, ⃗𝑦2)×

× 𝒢(0)
𝜔𝑖 ( ⃗𝑦2, ⃗𝑦3) ̄𝒢(0)

𝜔𝑖 ( ⃗𝑦3, ⃗𝑥) (7)
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Critical Temperature in the Uncoupled Regime

Let us start in the limit 𝑔12 = 0. In this case the so-called mean-field
critical temperature, 𝑇𝑐0, can be obtained by neglecting spatial
variations of the gaps and terms 𝒪(Δ3

𝑖 ). The gap expansion becomes

−𝑔𝑖𝑖𝑇 ∑
𝜔

∫ d3𝑧 d3𝑘
(2𝜋)3

d3𝑘′

(2𝜋)3
exp[−𝑖(�⃗� − �⃗�′) ⋅ ⃗𝑧]

(𝑖ℏ𝜔 − 𝜉𝑘𝑖)(𝑖ℏ𝜔 + 𝜉𝑘′𝑖)
= 1. (8)

The 3D band produces the standard value for

𝑇𝑐0
ℏ𝜔𝑐

= 2𝑒Γ

𝜋 exp[−1/𝑔22𝑁2(0)] (9)

where 𝑁2(0) = 𝑚𝑘𝐹 /2𝜋2ℏ2 is the DOS at the Fermi level of band 2
and Γ ≈ 0.577.
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The equation for the q1D band results in:

𝜆1 ∫
1+�̃�

0
d𝑒 tanh[(𝑒 − ̃𝜇)/(2 ̃𝑇𝑐0)]

(𝑒 − ̃𝜇)𝑒1/2 = 1, (10)

where �̃� = 𝑋/ℏ𝜔𝑐 (ℏ𝜔𝑐 is the cutoff energy) and

𝜆1 = 𝑔11𝑁1 = 𝑔11𝜎(𝑦𝑧)√ 𝑚𝑥
32𝜋2ℏ3𝜔𝑐

, (11)

where it is defined the constant

𝜎(𝑦𝑧) = (∫ 𝑑𝑘𝑦
2𝜋

𝑑𝑘𝑧
2𝜋 ) ∼ (𝑎𝑦𝑎𝑧)−1, (12)

the inverse product of the lattice parameters in the 𝑦 and 𝑧 directions,
respectively.
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Figure: Left: plot of the mean-field critical temperature of the q1D system as
function of the chemical potential (in units of ℏ𝜔𝑐). Right: relative 𝑇𝑐0 with
respect to its value at the deep-band regime, 𝜇 = ℏ𝜔𝑐. Each contour line
correspond to a different value of the dimensionless coupling, 𝜆1.
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Ginzburg-Landau Coefficients

In order to include the effect of fluctuations of the gap, we need to
calculate the GL coefficients for the q1D system. Expanding the gap
in Taylor series,

Δ1( ⃗𝑥) ≈ ∫ 𝑑3𝑧𝐾𝑎1( ⃗𝑧) [Δ1( ⃗𝑥) + ( ⃗𝑧 ⋅ ∇⃗)2

2 Δ1( ⃗𝑥)] +

+ Δ1( ⃗𝑥)3 ∫ 𝑑3𝑦1𝑑3𝑦2𝑑3𝑦3𝐾𝑏1( ⃗𝑥, ⃗𝑦1, ⃗𝑦2, ⃗𝑦3) (13)

⇒ 𝑎1Δ1( ⃗𝑥) + 𝑏1Δ1( ⃗𝑥)3 − 𝒦(𝑥)
1 𝜕2

𝑥Δ1( ⃗𝑥) = 0 (14)

In this case, 𝒦(𝑦)
1 = 𝒦(𝑧)

1 ≈ 0.
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𝑎1 = −𝜏 𝑁1
2 ̃𝑇𝑐0

1+�̃�

∫
0

d𝑒
𝑒1/2 {1 + cosh [ (𝑒−�̃�)

̃𝑇𝑐
]}

(15)

𝑏1 = 𝑁1
4ℏ2𝜔2𝑐

1+�̃�

∫
0

d𝑒
sech2 [(𝑒 − ̃𝜇)/2 ̃𝑇𝑐0]

𝑒1/2(𝑒 − ̃𝜇)3

× [𝑒 − ̃𝜇
̃𝑇𝑐0

− sinh(𝑒 − ̃𝜇
̃𝑇𝑐0

)] , (16)

𝒦(𝑥)
1 = ℏ2

𝑚𝑥

𝑁1
4ℏ2𝜔2𝑐

1+�̃�

∫
0

d𝑒√𝑒
sech2 [(𝑒 − ̃𝜇)/2 ̃𝑇𝑐0]

(𝑒 − ̃𝜇)3

× [𝑒 − ̃𝜇
̃𝑇𝑐0

− sinh(𝑒 − ̃𝜇
̃𝑇𝑐0

)] , (17)

where 𝜏 = 1 − 𝑇 /𝑇𝑐.
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Ginzburg-Levanyuk Parameter

The Ginzburg-Levanyuk parameter, 𝐺𝑖, gives the temperature
𝑇 ∗ = 𝑇𝑐0(1 − 𝐺𝑖) where the specific heat in the presence of
fluctuations dominates over the specific heat without fluctuations.

𝐺𝑖3𝐷 = 1
32𝜋2

𝑇𝑐0𝑏2

𝑎𝒦(𝑥)𝒦(𝑦)𝒦(𝑧) (18)

𝐺𝑖2𝐷 = 𝑏
4𝜋𝑎

√
𝒦(𝑥)𝒦(𝑦)

(19)

𝐺𝑖1𝐷 = 3√ 𝑏2

128𝒦(𝑥)𝑇𝑐0𝑎3 (20)

[Phys. Rev. B 100, 064510 (2019)]
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Inserting the GL parameters derived previously at the expresion for
𝐺𝑖1𝐷, we obtain:

Figure: Ginzburg number for a quasi-1D band as function of the chemical
potential for different values of coupling.
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𝑇𝑐0 for Quasi-1D + 3D Bands

Now let us see the case 𝑔12 ≠ 0:

∑
𝑗

𝛾𝑖𝑗Δ𝑗 = ∫ d3𝑧𝐾𝑎𝑖( ⃗𝑧)Δ𝑖 (21)

∑
𝑗

𝐿𝑖𝑗Δ𝑗 = ∑
𝑗

(𝛾𝑖𝑗 − 𝐼𝑎𝑖𝛿𝑖𝑗)Δ𝑗 = 0, (22)

where 𝐼𝑎𝑖 = ∫ 𝑑3𝑧𝐾𝑎𝑖( ⃗𝑧).

𝐼𝑎1 = 𝑁1

1+�̃�

∫
0

𝑑𝑒 tanh[(𝑒 − ̃𝜇)/2 ̃𝑇𝑐]
(𝑒 − ̃𝜇)𝑒1/2 , 𝑁1 = 𝜎(𝑦𝑧)√ 𝑚𝑥

32𝜋2ℏ2

𝐼𝑎2 = 𝑁2(0) ln(2𝑒Γ

𝜋
1
̃𝑇𝑐
) , 𝑁2(0) = 𝑚𝑘𝐹 /2𝜋2ℏ2
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The matrix 𝐿 produces non-trivial solutions for Δ⃗ when

det(𝐿) = (𝑔11 − 𝐺𝐼𝑎1)(𝑔11 − 𝐺𝐼𝑎2) − 𝑔2
12 = 0, (23)

where 𝐺 = 𝑔11𝑔22 − 𝑔2
12. The dimensionless couplings are defined as

𝜆1 = 𝑔11𝑁1, (24)
𝜆2 = 𝑔22𝑁2(0), (25)

𝜆12 = 𝑔12√𝑁1𝑁2(0). (26)
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Figure: Contour lines of 𝑇𝑐0 for different inter-band couplings, 𝜆12, in the
cases when a) 𝜆1 = 0.1 and 𝜆2 = 0.32 and b) 𝜆1 = 0.1 and 𝜆2 = 0.35. The
dashed black lines corresponds to solutions for 𝑇𝑐0 in the decoupled regime,
𝜆12 = 0.
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Figure: mean-field critical temperature for the two-band system with
𝜆1 = 0.2 and 𝜆2 = 0.18.
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Effective dimension of the system

First one must solve the eigenvalue equation 𝐿Δ⃗ = 0:

𝜁+ = 0 ⃗𝜂+ = ( 1
𝑆 ) , (27)

𝜁− ≠ 0 ⃗𝜂− = ( −𝑆
1 ) , (28)

where

𝑆 = [𝑔22 − 𝐺𝑁1𝐼𝑎1]/𝑔12 = [𝜆22 − Λ𝐼𝑎1]/𝜒1/2𝜆12, (29)

Λ = 𝜆1𝜆2 − 𝜆2
12 and 𝜒 = 𝑁1/𝑁2. Obviously,

Δ⃗ = Ψ( ⃗𝑥) ⃗𝜂+. (30)
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By substituting this simplified expression at the gap expansion and
selecting only 𝜏3/2 contributions we obtain that Ψ( ⃗𝑥) obeys the GL
equation

𝑎Ψ + 𝑏Ψ3 + ∑
𝑙=𝑥,𝑦,𝑧

𝒦𝑙𝜕2
𝑙 Ψ = 0 (31)

with redefined coefficients

𝑎 = 𝑎1 + 𝑎2𝑆2, (32)
𝑏 = 𝑏1 + 𝑏2𝑆4, (33)

{ 𝒦(𝑥) = 𝒦(𝑥)
1 + 𝒦2𝑆2

𝒦(𝑦) = 𝒦(𝑧) = 𝒦2𝑆2, (34)

where 𝑎2 = −𝜏𝑁2(0), 𝑏2 = 7𝜁(3)𝑁2(0)/8𝜋2 (remember that
𝒦(𝑦)

1 = 𝒦(𝑧)
1 = 0).

The the effective dimension of the two-band system is 3!!
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The Effect of Fluctuations

𝐺𝑖 = 1
32𝜋2

𝑇𝑐0𝑏2

𝑎𝒦(𝑥)𝒦(𝑦)𝒦(𝑧) (35)

= 𝐺𝑖3𝐷
2

𝑇𝑐0
𝑇𝑐02

( 𝑏1
𝑏2

+ 𝑆4)2

(𝑎1
𝑎2

+ 𝑆2) (𝒦(𝑥)
1

𝒦2
+ 𝑆2) 𝑆4

(36)

where
𝐺𝑖3𝐷

2 = 1
32𝜋2

𝑇𝑐02𝑏2
2

𝑎2𝒦3
2

. (37)

In the limit of infinite deep band, 𝐸12 → ∞, 𝒦(𝑥)
1 ≪ 𝒦2, we have

𝐺𝑖 = 𝐺𝑖3𝐷
2

𝑇𝑐0
𝑇𝑐02

( 𝑏1
𝑏2

+ 𝑆4)2

(𝑎1
𝑎2

+ 𝑆2) 𝑆6
. (38)
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Figure: Ginzburg number for the case of two-bands with respect to the
isolated 3D band. 𝜆1 = 0.1 and 𝜆2 = 0.05.
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Renormalized Critical Temperature

With renormalization group technique, one can derive the critical
temperature of the system in the presence of fluctuations:

𝑇𝑐 = 𝑇𝑐0
1 + 8𝜋

√
𝐺𝑖

. (39)

[Larkin and Varlamov, Theory of FLuctuations in Superconductors,
2005.]
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Enhancement of the Critical Temperature

Figure: a) The mean-field critical temperature, 𝑇𝑐0, for the 2-band case of
q1D and 3D bands. b) Renormalized critical temperature, 𝑇𝑐. In both plots,
𝜆1 = 0.2 and 𝜆2 = 0.18. 𝐺𝑖3𝐷 = 10−10.
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Conclusion

• Even though isolated q1D systems have high mean-field critical
temperatures, the effect of fluctuations is too strong which
prevents these systems to achieve high-T𝑐.

• The combination of a q1D and a 3D bands forms an effective 3D
system with high mean-field critical temperature and lower
effect of fluctuations over 𝑇𝑐.

• This simple model gives a clear approach for explaining
High-𝑇𝑐’s measured in those recently discovered chain-like
materials with quasi-1D bands.
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