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Introduction

It is well-known that the off-diagonal long range order is not possible in 1D

This means that the spontaneous breakdown of the continuous symmetry does not take 
place for 1D case (including the breakdown of U(1) symmetry, associated with the 

superconducting order parameter). 

In other words, fluctuations fully suppress superconductivity in 1D



However, such Q1D superconductors are still affected by strong 
fluctuations diminishing the coherence temperature. 

The superconducting state can still be achieved when several 1D structures (parallel 
chains of molecules or atoms) are coupled one to another [see e.g. K. B. Efetov and A. I. 
Larkin, Sov. Phys. JETP 39, 1129 (1974); L. P. Gor'kov L. P. and I. E. Dzyaloshinskii I. E., 

Sov. Phys. JETP 40, 198 (1975)]

These predictions were confirmed by the 
discovery of the low-temperature 

superconductivity in Fabre and Bechgaard salts 
- organic Q1D superconductors

Bechgaard salts are derived from tetramethyltetraselenafulvalene (TMTSF)



Subsequent theoretical efforts were focused on finding the conditions under which the 
critical temperature of the Q1D superconductors could be increased rather than 

reduced. 

It was suggested that such an increase can be achieved in the vicinity of the Lifshitz 
transition near the edge of the Q1D single-particle energy band. [See e.g.  A. Perali, A. Bianconi, 
A. Lanzara, N. L. Saini, Solid State Commun. 100, 181 (1996); A. Bianconi, A. Valletta, A. Perali, N. L. Saini, 
Solid State Commun. 102, 369 (1997); A. A. S. and M. D. Croitoru, Phys. Rev. B 73, 012510 (2006); A. A. S., 
M. D. Croitoru, A. Vagov, and F. M. Peeters, Phys. Rev. B 82, 104524  (2010).]

However, the fluctuations, that are already very large in the presence of the Q1D effects, 
are additionally enhanced due to the Bose-like character of the pairing.



The enhancement of  was found for weakly interacting stripes, formed due to a particular 
transformation of the antiferromagnetic insulator. [S. A. Kivelson, E. Fradkin, and V. J. Emery, 
Nature 393, 550 (1998); E. Arrigoni, E. Fradkin, and S. A. Kivelson, Phys. Rev. B 69, 214519 (2004).]

Tc

The effect requires, however, a subtle balance of different interplaying physical 
mechanisms, relevant for superconducting cuprates.



Recently the interest in Q1D superconductors has been boosted by the discovery of 
-chain based materials.  [J.-K Bao et al. , Phys. Rev. X 5, 011013 (2015); Z.-T. Tang et al., Phys. Rev. B 91, 
020506 (2015); Z.-T. Tang et al., Sci. China Mater. 58, 16 (2015); H. Jiang et al., Scientific Reports 5, 16054 
(2015)S.-Q. Wu et al., Phys. Rev. B 100, 155108 (2019).]

Cr3As3

First-principle calculations demonstrate that these superconductors are multiband 
materials, where the quasi-1D bands coexist with conventional 3D bands

Fermi surface Fermi surface of -band: Lifshitz transition 
by changing the H-intercalation

γ



How coupling to the stable 3D 
condensate changes the properties of 
Q1D condensate? Can it stabilize the 
system near the Lifshitz transition?



Minimal model and formalism
• We consider a two-band superconductor with Q1D and 3D contributing bands

• The s-wave pairing is assumed for in both Q1D and 3D bands, coupled via the 
Josephson-like interband transfer of Cooper pairs. 

• The intraband and interband pair-exchange couplings are determined by the real matrix 
, with the elements  ( ). 

• For simplicity we consider the parabolic single-particle dispersion in both bands; the 
Fermi surface of the 3D band  is spherically symmetric. The principal axis of the 
Q1D band  is parallel to the z-axis.

• The system is in the clean limit

ǧ gνν′ 
= gν′ ν ν, ν′ = 1,2

ν = 1
ν = 2



Lower-edge energy of the 3D band ε0 < 0

In the x and y directions the Q1D energy dispersion 
is degenerate and we assume the effective finite 
integral of the density of states (DOS) for both 
directions:

  are the effective masses and , the 
energies and the chemical potential  are measured 
relative to the bottom of the Q1D band.  Our study is 
focused on the superconducting state near the Lifshitz 
transition at .To have a BCS-like condensate in the 3D 
band, we assume that  is much larger than the 
characteristic pairing energy in the 3D band.

m1,2 k = (kx, ky, kz)
μ

μ = 0
|ε0 |

ε1,k = ε0 +
ℏ2k2

2m1
, ε2,kz

=
ℏ2k2

z

2m2



The mean-field Hamiltonian, introduced by H. Suhl with coauthors and independently by 
V. A. Moskalenko, reads

 - the single-particle Hamiltonian,  - the band-dependent superconducting gap 
function;  - the inverse coupling matrix;  and  - the scalar product of 
vectors in the band space.

Tν(r) Δν(r)
ǧ−1 ⃗Δ = (Δ1, Δ2)T ⟨, ⟩

Self-consistency requires

Rν = ⟨ψ̂ν↑(r)ψ̂ν↓(r)⟩



Our strategy: the model based on the above equations is used to calculate and 
compare the mean-field critical temperature  with the fluctuation-shifted 
critical temperature : 
(1)  is obtained by solving the linearized variant of the matrix gap equation 

(self-consistency equation). 
(2) Thermal fluctuations are investigated by using the expansion for the free 

energy functional for the two-band system with respect to the band 
superconducting gap functions, which essentially gives the two-band 
Ginzburg-Landau free energy functional. 

Tc0
Tc

Tc0

  When     - thermal fluctuations are insignificantTc ≈ Tc0

          If    - thermal fluctuations suppress the coherenceTc ≪ Tc0

Two critical temperatures



To calculate both  and , we employ the expansion Tc0 Tc

 depend on the microscopic model

For 3D band 

with , - 3D DOS,  - the cut-off frequency,  - the Euler 
constant,  and  - the Fermi velocity in 3D band.

τ = 1 − T/Tc0 N1 = m1kF /2π2ℏ2 ωc γ
v1 = ℏkF /m1



For Q1D band the coefficients are given by integrals and can be calculated only 
numerically. For  one gets|μ | < ℏωc

where  and ;   - the characteristic velocity; and 
 - the 1D DOS at the cut-off energy, with the factor  accounting for the 

states in x and y directions.  

T̃c0 = Tc0/ℏωc μ̃ = μ/ℏωc v2 = 2ℏωc/m2
N2 = σxy/4πℏv2 σxy



The linearized matrix gap equation

The determinant of  is zero:Ľ

 - the solutionTc0

G = g11g22 − g2
12

Mean-field critical temperatures



 and  are not position dependent;  controls the spatial profiles of both condensates 
(Landau order parameter) in the mean-field approach immediately near the critical 
temperature

Ľ ⃗η ψ(r)

In addition, the linearized matrix gap equation yields

Δ1(r) ∝ Δ2(r) ∝ ψ(r)

normalization is not necessary



Fluctuation-shifted critical temperature

The actual critical temperature  is lower than  due to fluctuations. The fluctuation-
induced correction to  is obtained by using the standard Gibbs distribution , with 
the free energy functional

Tc Tc0
Tc0 e−F/T

The stationary condition for this functional yields the matrix gap equation, discussed above.  

Expansion

 - the second fluctuation modeφ(r)



The free energy functional  is then expressed in terms of  and  as  φ(r) ψ φ

where 

and 

 with  the interaction between the two modes and the coefficients are averages over 
the contributing bands.

fψφ



The dependence of the coefficients associated with the two fluctuations modes plays an 
important role and should be discussed in more details:

The mode  is critical as its characteristic length is divergent, the mode  is not critical as 
its lengths is finite, it gives only minor corrections to the contribution of thermal 
fluctuations.

ψ φ



The mode  describes non-critical fluctuations and can be safely omitted, i.e.φ

Coefficients in front of the spatial gradient term read 

We obtain that the thermal fluctuations of the two-band system, made of the Q1D and 
3D bands, are controlled by the anisotropic single-component Ginzburg-Landau 

theory. The anisotropy axis is along the z-direction, the principal axis of the Q1D band.



Coupling to a stable 3D condensate gives rise to a single critical mode that controls the 
thermal fluctuations of the condensate gap functions  and . In other words ``light" 
excitations of the Q1D condensate are always accompanied by ``heavy" excitations of 
the stable 3D condensate.  This is the multiband fluctuation screening mechanism. 

Δ1 Δ2

L. Salasnich, A. A. S., A. Vagov, J. Albino Aguiar, and A. Perali, Phys. Rev. B 100, 064510 (2019)

For thermal fluctuations



Using the renormalization group approach for single-component Ginzburg-Landau 
theory (e.g., see Larkin and Varlamov fluctuation textbook), one obtains

with the Ginzburg number (or the Ginzburg-Levanyuk parameter)

and .  can be rewritten asa′ ψ = daψ /dT Gi

 - the Ginzburg number for standalone 3D bandGi3D



The scheme of calculations

Tc0



Relevant parameters
Essential parameters of the model are the couplings  and the DOSs  
and , while the cutoff  sets the energy scale. Below it is convenient to introduce the 
dimensionless coupling constants  (Q1D -band 2, 3D -band 1).

The parameter , which controls  ,  depends on   and on the DOSs ratio 
 (the latter is 1 for simplicity). The interband pair-exchange coupling  is 

considered as a variable. For intraband couplings we assume ,  
(standalone 3D band is active) and ,  (standalone 3D band is 
passive).

The fluctuation-shifted  depends on  and . To find  one needs to choose . 
However, we follow a different path and use an estimate . Recall, that the 
Ginzburg number of most conventional 3D superconductors is in the range , 
see Ketterson and Song textbook. 

g11, g22, g12 = g21 N1
N2 ℏωc

λνν′ 
= gνν′ 

NνNν′ 

S Tc0 λ11, λ22, λ12
N1/N2 λ12

λ22 = 0.2 λ11 = 0.18
λ22 = 0.2 λ11 = − 0.05

Tc S Gi3D Gi3D N1
Gi3D ∼ 10−10

10−6 ÷ 10−16



Results

Mean-field near the Lifshitz 
transition 

Fluctuation driven critical temperature 
near the Lifshitz transition; taking 

 (like in Al), one obtains ℏωc ≈ 400 K
Tc,max ≈ 70 K

λ11 = 0.18, λ22 = 0.2



Results λ11 = − 0.05, λ22 = 0.2

Results are almost the same as previously for the active 3D band: the critical temperature is 
mainly controlled by quasi-1D band; fluctuation “screening” takes place even in the presence 

of the passive 3D band.

quasi-1D band does not contribute - superconductivity disappears due to the passive 3D band 



Conclusions
• Our calculations demonstrate that coupling to a stable 3D condensate ``screens" out the 

severe thermal Q1D fluctuations.
• The ``screening” is so effective that even in the vicinity of the Lifshitz transition (the 

chemical potential is near the edge of the Q1D band) the system is a mean-field high-  
superconductor.

• The thermal fluctuations are suppressed at very small intraband pair-exchange 
couplings, i.e. almost for nearly decoupled bands.

• The results are not sensitive to the character of the 3D band: it can be passive so that the 
condensate appears there only due to Josephson-like coupling between bands.

• Our results are obtained for the s-wave pairing but they hold also for d-wave symmetry. 
We also expect a similar scenario of ``screening” in the presence of the triplet 
superconductivity, as well (related investigations are underway).

Tc
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